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Density of Electrodynamics’ Spin 
 

Radi I. Khrapko 

Moscow Aviation Institute, 125993, Moscow, Russia 

 

In the frame of the standard electrodynamics, a torque is calculated, which acts from a circularly 

polarized electromagnetic beam with a plane phase front on an absorbing surface. And a moment of 

momentum flux in the same beam is calculated in the frame of the same electrodynamics. It is found that 

this torque is twice more than the moment of momentum flux. We have inferred that the calculation of the 

electromagnetic angular momentum flux in the beam is incorrect. Namely, this calculation takes only a 

moment of momentum into account as an angular momentum, and does not take account of spin. An 

analysis of the field theory foundations of the electrodynamics confirms this inference. Some changes in 

the field theory allow to obtain an electrodynamics‟ spin tensor, which accompanies the Maxwell energy-

momentum tensor. Using this spin tensor for the beam yields the equality between the torque and the 

angular momentum flux. In this way, the electrodynamics is completed by a spin tensor. 

PACS numbers: 42.25.Bs; 42.25.Ja; 42.87.-d 

OCIS codes: 300.1030; 260.5430; 260.0260 

Keywords: Electrodynamics torque, angular momentum, spin tensor 

 

1. Introduction 

A circularly polarized light beam carries an angular momentum. It is beyond any doubt. This beam 

rotated the Beth‟s birefringent plate [1]. This beam rotates particles trapped in optical tweezers (see, e.g. 

[2]). However, troubling questions exist: what is the 

distribution of this angular momentum over the beam 

section, and what is the nature of the angular momentum, 

orbital or spin? Can we use a concept of an angular 

momentum flux density as well as we use an energy flux 

density or linear momentum flux density? In order to look 

into this question, in Introduction, we examine an influence 

of the energy flux density and of the momentum flux 

density upon a surface, which absorbs a top-flat beam. The 

angular momentum flux density is considered in the 

following two Sections. We use our conviction that a 

distribution of angular momentum in electromagnetic 

waves is shown by local characteristics of mechanical 

stresses, i.e. by the mechanical stress tensor, which are 

made up at the absorbing surface. 

In Section 4, the field theory foundations of the 

electrodynamics are reminded, and we arrive at an 

electrodynamics‟ spin tensor, which represents a spin 

density. The spin tensor is applied for a calculation of the 

angular momentum flux in the beam in Section 5. 

If a light beam is absorbed by a material surface, 

this surface becomes hotter and experiences a pressure. The 

heat causes a temperature gradient and a heat flow on the 

surface from the alight zone of the surface to the periphery. 

The pressure causes a shear stress in the surface, by means 

of which the pressure force transfers to supports on the 

periphery 

Consider a so-called paraxial circularly polarized 
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beam of radius R  with its axis in the z-direction and traveling in this direction [3] (Fig. 1.) 

)()]()][(exp[  uiitzi yxzyxE


,  ,EB


i   222 yx  .                        (1.1) 

The symbol „breve‟ marks complex vectors and numbers excepting  i. zyx ,,  are the unique coordinate 

vectors. For short we set 1 ck , where ck,,  are the frequency, wave number, and light velocity. 

)(u  is the electric field amplitude. The function )(u  is explicitly made constant 0u  over a large central 

region of the beam. The variation of the function from this constant value to zero is localized within a layer 

of small thickness, which lies a distance R  from the axis. In the surface layer of the beam, i.e. there 

where the function )(u  decreases, longitudinal components of the electromagnetic fields exist (this 

components are z -directed). This is because the lines of force are closed, but they cannot transgress the 

surface of the beam  

We set 

 



0 0

222 122
R

dududxdyu                                                         (1.2) 

when integrating over the whole of absorbing surface, what is equivalent to integrating over a cross section 

of the beam (we will ignore the width of the surface layer of the beam when it is admissible). 

An energy flux density in the beam is the Poynting vector BE . At first, we consider the z -

component of the energy flux density, i.e. z

eT 0 -component of the Maxwell tensor. The index e emphasizes 

that 


eT  is the electrodynamics‟ stress tensor rather than mechanical one. Time averaging gives:  

20 2/)(2/)( uEiEEiEBEBET xyyxxyyx

z

e 


,                              (1.3) 

the dash marks complex conjugating numbers. Thus, the power of our beam, because of (1.2), is 

  12220 dudxdyudxdyTW z

e
                                    (1.4) 

We consider a sufficiently wide beam and neglect the surface layer of the beam here; we set 

Const)( 0  uu  if R . Thus, because of (1.2), 
22

0

2 /1)0( Ruu  .                                      (1.5) 

Now one can find a heat flux density in the absorbing surface: 

2/2

0

ii xuQ    if  R ,  and  222

0 2/  ii xRuQ   if  R                                  (1.6) 

(index i  means yxi ,  on the surface). Indeed, a divergence of this flux density equals 
2

0

2

0 2/)( uyxuQ yx

i

i    if  R ,  and  0 i

iQ   if  R .                                 (1.7) 

Given heat conductivity, one can calculate the temperature distribution. 

The beam pressure on the absorbing surface equals zz

eT -component of the Maxwell tensor. The 

sense of this component is given by the equality 

dxdyTdF zz

e

z  ,                                                    (1.8) 

where zdF  is the force, which acts on an dxdy -element of an absorbing surface from an electro-magnetic 

field. Ignoring the surface layer of the beam, one has a constant pressure in the alight zone of the absorbing 

surface  
2

0

2222 4/)( uBBEET yxyx

zz

e  ,                        (1.9) 

which equals the energy flux density (1.3), as it must be. A mechanical stress in the absorbing surface must 

balance this pressure. The shear stress is distributed through the thickness of our material surface and is 

expressed by z

mT -component of the stress tensor of the surface. The index m emphasizes that 


mT  is the 

mechanical stress tensor rather than electrodynamics one. Consider a disk of radius   with its center at the 

axis of the beam, which is picked out from the absorbing surface. A balance conditions for this disk, viz. 

  222

0

z

mTu  for R , and   222

0

z

mTRu  for R , give the mechanical stresses in the surface: 

2/2

0 uT z

m  for R ,  and  2/22

0 RuT z

m  for R ,                         (1.10) 

these expressions are similar to (1.6). 
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Thus, the heat flux density and mechanical stress in z -direction increase proportionally to the 

distance   from the axis in the alight zone of the absorbing surface. They tend to zero as hyperbole beyond 

the alight zone.  

 

2. Maxwellian torque 

A torque acts on the absorbing surface from the beam, according to the Maxwell electrodynamics, 

if and only if the surface experiences tangential forces, which are expressed through yz

e

xz

e TT , -components 

of the Maxwell tensor. However, these components equal zero on the absorbing surface apart from a 

boundary of the alight zone where the surface layer of the beam is absorbed. 

Indeed, the Poynting vector and the momentum density are directed along the direction of 

propagation, i.e. along z -axis, in the large central region of the beam, as well as in a plane wave. 

Therefore, the tangential forces act on the absorbing surface only at the boundary of the alight zone, where 

0,0 22  uu xy , 

zxzx

xz

e BBEET  ,     ,2/)(2/)( 2uEEBBEET yzxzxzx

xz

e 


                (2.1) 

2/2uT x

yz

e  .               (2.2) 

A disk of radius R  with its center at the axis of the beam, which is picted out from the absorbing 

surface, does not experience tangential forces and does not experience a torque. Therefore, the alight zone, 

right up to its boundary, does not contain a mechanical stress, which is caused by a torque. 

A torque acts only on the boundary of the alight zone. The torqie equals  

  1)2/2/()( 222

2 dxdyudxdyuyuxdxdyTyTx yx

xz

e

yz

e
                 (2.3) 

(index 2 means that this expression is valid in the frame of Section 2). Torque (2.3) must be balanced with 

a torque, which acts on our surface from supports on the periphery. Therefore the part of the surface for 

R , which is outside of the alight zone, must contain a mechanical stress which is expressed by 

2mT -

component of the surface stress tensor. The sense of this component is given by the equality  

dlTdF m

  ,                                                    (2.4) 

where dF  if the force, which acts on the element dl  of a circle and is directed along  -coordinate. A 

balance condition for a disk of radius R , 

 
  2

2

22 2 mm TdlTdF ,  R ,                                (2.5) 

gives 2

2 2/1 

mT . As a result, we have, according to the Maxwell electrodynamics, the mechanical 

stress in the absorbing surface is 

02 

mT   for  R ,     2

2 2/1 

mT   for  R .                      (2.6) 

The fact, that the moment of momentum relative to the beam axis is contained only in the surface 

layer of the beam, and, accordingly, the torque acting on the absorbing surface is localized at the boundary 

of the alight zone, is well known (see, e.g., Fig. 1 from [4], and Fig. 9.3 from [5]). 

All presented here arguments show that, according to the standard electrodynamics, the large 

central alight zone of the absorbing surface experiences no torque and, accordingly, contains no 

corresponding mechanical stress. Mechanical stress, causing by torque, arises only in the boundary of the 

alight zone and extends over the absorbing surface to the periphery, right up to support of the surface. The 

boundary, and, consequently, supports on the periphery experience the torque from the beam, which equals 

12  . Because of the power of the beam is 1W  and the frequency 1 , one can write down  

 /2 W .                                                               (2.7) 

However, you must note that the power W  is absorbed uniformly by the alight zone, but the 

moment of momentum, which results in the torque 2 , is absorbed only by the boundary of the alight zone, 

i.e. not there where the power is absorbed. We cannot write  /2 dWd , where torque 2d  and power 

dW  fall at an infinitesimal surface element dxdy . Therefore, it is reasonably to suppose that this moment 

of momentum is not concerned with this energy, and that this energy, which is the energy of a circularly 
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polarized electromagnetic field, is concerned with another angular momentum, which is absorbed 

uniformly by the alight zone, but is not recognized by the standard electrodynamics. On the other hand, the 

torque 2  is caused by the longitudinal components of the electromagnetic fields at the boundary of the 

alight zone. So, 2  cannot have a wave nature and, therefore, cannot be concerned with spin.  

The absence of a torque in the large central alight zone of the absorbing surface in the frame of the 

standard paradigm is confirmed by an interesting reasoning in [6]. The authors cut the beam into two 

coaxial pieces in their mind: the inner part has radius of R1 , outer part looks like a thick-wall tube and 

is located between 1  and R , 

)()()(  outin uuu ,                                  (2.8) 

so 
11

|)(|)(   outin uu . The authors rightly affirm that two equal, but opposite, torques, which act 

on the absorbing surface near the circle of radius 1 , are eliminated mutually. 

 

3. Spin torque 

The work [6] was written as a response to a question [7], where it was pointed out that electric 

dipoles in the absorbing surface experience torques from the circularly polarized wave. Because of this, the 

surface material must experience a volume density of torque, according to [8,9] 

EP V/ .                                                         (3.1) 

where P  is the electric polarization  

R. Feynman explains the beginning of this torque [10] splendidly (see Fig. 17-5 from [10]). His 

result is 

 /dWd ,                                                        (3.2) 

where torque d  and power dW  fall at an infinitesimal surface element dxdy .  

Unfortunately, the authors of the work [6] ignored the problems, which arise from taking into 

account this torque. 

Thus, the energy flux density (1.3), which falls on the absorbing surface, is accompanied by a 

torque density, and the energy flux density is in the same relation to the torque density as the whole energy 

flux (1.4) to the torque 2  (2.7), which acts on the boundary of the alight zone, in accordance with the 

Maxwell theory. However, now the torque density is constant in the alight zone and is not expressed in 

terms of the Maxwell tensor, though the torque undoubtedly cause a mechanical stress, which is expressed 

in terms of a mechanical stress tensor. We will find this stress by the use of a balance condition, but it is 

appropriate mention here that the authors of the works [8-10] identify the torque of Section 3 just with spin 

flux of the beam. 

Consider a disk of radius R  with its center at the axis of the beam, which is picted out from the 

absorbing surface. According to (1.3) and (1.5) the disk receives the power 222

0

2 /)( RuW  , and 

then the disk experiences the torque 22

3 /)( R  (index 3 means that this expression is valid in the 

frame of Section 3). A balance condition for this disk, viz.  3

2

3 2 mT , which is analogous to (2.5), now 

takes the form of  3

222 2/ mTR , i.e.  

Const2/1 2

3  RTm  for R .                                  (3.3) 

If R ,  3

2

3 21 mTW  . It means 
2

3 2/1 

mT   for R .                                         (3.4) 

Please see a supplementary explanation in Sect. 6. 

Thus, with the regard for the stresses 


2mT  (2.6) and 


3mT  (3.4), we arrive to a double torque at the 

periphery, i.e. for R , 

22)( 2

32tot  

mm TT .                                              (3.5) 

The result (3.5) was obtained more pronouncedly in [11,12]. The result is an evidence that the 

moment of momentum, which the beam (1.1) brings according to the standard electrodynamics (see 
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Section 2), is half of the angular momentum, which the absorbing surface receives according to the same 

electrodynamics. This means the standard electrodynamics is not complete. 

 

4. Electrodynamics’ spin tensor  

We use the idea mentioned in the works [8-10] about a spin nature of the torque acting on the large 

central alight zone of the absorbing surface and show that the torque is really caused by an absorption of 

spin flux density. 

As is well known, photons, i.e. electromagnetic waves, carry spin, energy, momentum, and angular 

momentum that is a moment of the momentum relative to a given point or to a given axis. The energy, 

momentum and moment of momentum are described by the Maxwell energy-momentum tensor [13,14].  

4/







  FFgFFgTe
,                                       (4.1) 

with the divergence 






  FjTe
.                                                     (4.2) 

However, we must recognize the moment of momentum is not spin. This idea is discussed in the paper 

[15], which was written in response to [16]. The standard electrodynamics cannot catch sight of classical 

electrodynamics‟spin. So, it is in need of an expansion, and the classical field theory shows a way to the 

expansion [11].  

The Lagrange formalism gives two divergence-free tensors for free fields, namely, energy-

momentum and spin tensors [14]: 

L
L 





 



 g

A
AT

)(
,  

)(
2 ][














A
A

L
.                  (4.3) 

Unfortunately, tensors (4.3) contradict electrodynamics experiments; they are not electrodynamics tensors 

no matter what Lagrangian is in use [11]. Really, A. Barut [17] presented a series of Lagrangians and field 

equations in Table 1 

 
In Table 2, we present corresponding energy-momentum and spin tensors: 

Table 2 

Electrodynamics’ Lagrangians, Energy-Momentum Tensors, and Spin Tensors 

Lagrangian Energy-momentum tensor Spin tensor 

4/

 FFLL
c

I  4/
, 







  FFgFATT
c

I  
  ][2 FA

c
I  

2/)(4/ 2
,



  AFFLII  2/)( 2
,,

,





  AgAATT III  
  ,

][2 AgAIII  

2/
,

,



 AALIII  







  ,

,

,,
AAgAATIII  

  ],[2 AAIII  







  jAFFLV 4/  




  jAgTT IV  
  IV  

It is clear, none of these energy-momentum tensors is the Maxwell tensor. And what is more, none of 

these tensors has true divergence (4.2). A method is unknown to get a tensor with the true divergence in 

the frame of the standard Lagrange formalism.  To obtain true energy-momentum and spin tensors of 

electrodynamics we add a specific terms [11,18-20]:  
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



  FAt ,       AAs ][2 ,                        (4.4) 

to the canonical tensors 

c
T , 

c
 and arrive at the Maxwell tensor (4.1) and, at long last, at our spin 

tensor [11]: 
][][   AA .                                         (4.5) 

Here A  and   are magnetic and electric vector potentials which satisfy  

0 





 A ,     FA ][2 ,   2/2 ][



  Fe ,                                (4.6) 

where   FF , 


 ggFF   is the field strength tensor of a free electromagnetic field; e  is 

the Levi-Civita antisymmetric tensor density. It is evident that the conservation law, 0 

 , is held 

for a free field.  

In other words, we introduce a spin tensor   into the modern electrodynamics, i.e. we complete 

the electrodynamics by introducing the spin tensor, i.e. we claim that the total angular momentum consists 

of the moment of momentum [13] 

 
VV

j

e

iij dVdVTxL )(2 0][
BEr ,                                          (4.7) 

and a spin term,  

 
V

ijij dVS 0 .                                                    (4.8) 

The total angular momentum in the volume V  equals 

 
V

ijj

e

iijijij dVTxSLJ )2( 00][

  
V V

ij dVdV 0)( BEr ,               (4.9) 

and the angular momentum flux on the area a  equals 
ijijij

spinorb
  

a
k

ijkkj

e

i daTx )2( ][

  
a a

k

ijk dadaBEr )( .               (4.10) 

The angular momentum flux, i.e. torque dtdJ / , which is carried by the beam (1.1), according to 

(4.10), is 

 P/2/ dtdJ ,                                                     (4.11) 

what corresponds to the result (3.5) 

 

5. Spin tensor of a circularly polarized beam 

Here we use Eq. (4.10) for proving result (4.11). The first term of (4.10) is already calculated, 

12
orb

  (2.3). This term is independent of the existence of spin tensor. The second term, according to 

(4.5), uses the vector potentials A ,   and their derivatives with respect to z . We set the scalar 

potentials 000 A , ignore the surface layer of the beam, and take into account that z

z   because 

of the signature of the metric )(  . Then we have  

0))]((exp[ uitzidt yxEA  


,     AEB


idtidt ,                          (5.1) 

AyxA


zzz iuitzi  ,))]((exp[ 0
,                               (5.2) 

2

02/)(4/)( uAAAAAAAA xzyyzxxzyyzxxzyyzxxyz 


.      (5.3) 

So, the second term of Eq. (4.10), in view of (1.2), equals 

13
spin

 .                                                       (5.4) 

Thus, the large central alight zone of the absorbing surface receives spin flux of a constant density over the 

zone. The corresponding torque density is constant over the zone and causes a specific mechanical stress 

(3.3). The total angular momentum flux provided by the beam (1.1), accordingly with (4.10), is  
xyxyxy

spinorb
    2)( dxdydxdyTyTx xyzxz

e

yz

e ,              (5.5) 

as it was found in (3.5). 
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 6. Supplement 

The constant torque density of Sect. 3 acting on the alight zone of the absorbing surface has a 

simple one-dimensional analogy (see Fig. 2). If a rod experience a distributed torque ConstxF  /  

( 0,0  x ), a constant shear stress is in the rod as well as the constant stress 


3mT  (3.3) is in the 

central alight zone.  

 
It is evident any piece of the rod experiences forces xF  /  acting on ends of the piece. The stress (3.3) 

cannot be explained by the Maxwell electrodynamics, so the electrodynamics is not complete. 

 

7. Conclusions and Acknowledgements 

According to the standard electrodynamics, total angular momentum density is defined as the 

moment of the Maxwell tensor (density), 
kj

e

iTx ][2 , and this density gives rise to a total angular momentum 

of a beam in which two components can be distinguished: an “orbital” component depending on azimuthal 

gradients and a “spin” component depending on radial gradients. For a flat-top paraxial light beam without 

azimuthal gradients, the (only) “spin” component is concentrated on the steep region of the beam, and the 

“spin” density vanishs in the bright central area of an absorbing surface, according to the standard 

definition. 

However, in reality, this area evidently experiences a torque density if the beam is circular polarized, 

and the electrodynamics cannot explain this torque density in terms of the Maxwell tensor. A conclusion 

has been made that (i) the electrodynamics must be completed by a spin tensor and (ii) the component 

depending on radial gradients represents orbital angular momentum. The spin tensor doubles a predicted 

angular momentum of a circularly polarized light beam without an azimuth phase structure. The spin 

tensor is needed, in particular, for understanding of essential characteristic features of a rotating dipole 

radiation [21]. 

I am deeply grateful to Professor Robert H. Romer for valiant publishing of my question [7] (was 

submitted on Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups: 

sci.physics.electromag).  
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