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Abstract—The operational and canonical definitions of an energy-momentum tensor (EMT) are con-
sidered as well as the tensor and nontensor conservation laws. It is shown that the canonical EMT
contradicts the experiments and the operational definition, the Belinfante-Rosenfeld procedure worsens
the situation, and the nontensor “conservation laws” are meaningless. A definition of the 4-momentum of
a system demands a translator since integration of vectors is meaningless. The mass of a fluid sphere is
calculated. It is shown that, according to the standard energy-momentum pseudotensor, the mass-energy
of a gravitational field is positive. This contradicts the idea of a negative gravitational energy and discredits
the pseudotensor. And what is more, integral 4-pseudovectors are meaningless in general since reference
frames for their components are not determined even for coordinates which are Minkowskian at infinity.

DOI: 10.1134/S0202289314040082

Some Notations

Indices: i, j, · · · = t, x, y, z or t, r, θ, ϕ; α, β, · · · =
x, y, z or r, θ, ϕ.

The (standard) Einstein–Eddington–Tolman
pseudotensor: H i

∧k = H i
k

√−g∧.

The Landau-Lifshitz pseudotensor: hik
∧∧ =

hikg∧∧.
Mass-energy of a body with its gravitational field,

according to the pseudotensor: J .
Mass-energy of a body, i.e., the absolute value of

its 4-momentum: P .
Pressure in the interior of a massive ball: p.

1. INTRODUCTION

If particles or bodies attract each other by forces of
a certain real field and join, the joint mass turns out
to be smaller than the summed mass of the original
bodies. This is called the (negative) mass defect. The
simplest example is given by electrostatics. A proton
and an electron located at distance attract each other
by electric forces. The mass-energy of their own fields
is a part of their masses. Another part is formed by
the electron or proton substance (if the latter exists).
As the electron and proton join to form a neutral
hydrogen atom, part of the field disappears due to in-
terference while the corresponding energy turns into
the kinetic energy of these particles. Therefore, as
the particles approach each other, the total mass of
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the system is conserved. A part of the field energy
is simply converted to the particles’ kinetic energy.
However, at the final stage when the atom forms,
part of the kinetic energy travels away in the form of
radiation. As a result, the mass of the hydrogen atom
is smaller than the sum of masses of the free proton
and electron by 13.6 eV. However, the mass of the
system “atom + radiation” is conserved.

The situation is different for gravitational attrac-
tion. Consider, instead of the distant electron and
proton, a dust cloud surrounded by its own grav-
itational field. As the cloud contracts, the parti-
cles, as in the previous case, acquire kinetic en-
ergy, and as a result, the mass-energy of the cloud
increases (a positive mass defect). But the gravi-
tational field of the cloud does not disappear, it is
strengthened and extends to the volume that has
become free from the cloud. However, the mass of
the system “cloud + gravitational field” is conserved
according to Birkhoff’s theorem and remains equal to
the Schwarzschild parameter m. Therefore one has to
ascribe a negative mass-energy to the gravitational
field.

To take into account this negative gravitational
energy, one uses the standard pseudotensor of the
gravitational field together with matter contained in
it, H i

∧k = T i
∧k + ti∧k [1, (89.3)]. It is equal to a sum of

the matter energy-momentum tensor (EMT) and the
gravitational field pseudotensor. It is the latter that,
according to the existing opinion, provides a negative
contribution because it is claimed that the mass-
energy of the body together with its gravitational field
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equals m. This is expressed by the relation [1, (91),
(92), (97)]

Jt =
∫

(T i
∧t + ti∧t)dV ∧

t = m.

In the present paper we show that this conclusion is
wrong. In fact, the gravitational field pseudotensor
ti∧k contributes positively to this integral, and this en-
tirely discredits the idea of a gravitational field pseu-
dotensor. The quantity Jt is neither mass nor even
a temporal component of anything because it has
been obtained by integration of a component dJt =
H i

∧tdV ∧
i of the infinitesimal 4-momentum rather than

its absolute value dJ . However, we would like to
begin the article with a definition of the EMT of
matter and considering the problems connected with
its integration.

2. OPERATIONAL DEFINITION
OF AN ENERGY-MOMENTUM TENSOR

There are at present two different definitions of the
matter EMT which exist in parallel. On the one hand,
there is a local operational definition of matter EMT
like this [2]:

A 3-dimensional infinitesimal element dV of a
medium contains or transfers through itself the in-
finitesimal 4-momentum

dP i = T ik
∧ dV ∧

k . (2.1)

Let us comment on this definition. The EMT
is actually a tensor density (but we will call it a
tensor for simplicity). We do not use a gothic font
while writing densities, as is often done, see, e.g., [3].
Instead, we mark them with the symbol “wedge”
∧. This notation was used by Kunin in his Russian
translation of the monograph [5]. However, unlike [4],
we put the sign ∧ on the level of lower or upper indices
for densities of the weights +1 or −1, respectively.
The Levi-Civita symbol is denoted by ε∧ijkl, while a
volume element or an elementary area with an exter-
nal orientation, which are densities of weight −1, are
denoted in space-time as dV ∧

k or da∧ik, respectively;
the square root of the metric tensor determinant is
denoted as

√−g∧. For instance, it we use spherical
coordinates,

√−g∧ = r2 sin θ, a 3-volume at rest has
the components

dV ∧
t = dV rθϕε∧trθϕ = dr dθ dϕ,

dV ∧
r = dV ∧

θ = dV ∧
ϕ = 0, or

dVt = dV ∧
t

√
−g∧ = dr dθ dϕr2 sin θ;

the element of a spherical surface has the components

da∧tr = daθϕε∧trθϕ = dθdϕ, or

datr = da∧tr
√
−g∧ = dθ dϕ r2 sin θ;

the same surface element extended in time is a 3-
volume with the components

dV ∧
r = dV tθϕε∧trθϕ = dt dθ dϕ,

dV ∧
t = dV ∧

θ = dV ∧
ϕ = 0.

The 4-momentum components in a volume at rest are

dP i = T it
∧ dVt∧ = T it

∧ drdθdϕ

= T it√−g∧dr dθ dϕ,

and a 4-momentum passing for dt through the area
da∧tr has the components

dP i = T ir
∧ dV ∧

r = T ir
∧ dtdθdϕ.

The metric tensor determinant is itself a scalar density
of weight +2: g∧∧. It is important to note that the
definition (2.1) only gives the coordinate component
dP i. The physical component is obtained by tak-
ing into account the corresponding metric coefficient:
dP î = dP i√gii. For example, the mass is dP t̂ =
dP t√gtt.

The operational definition of the EMT is, in par-
ticular, used by Synge [6] (preserving the author’s
notations): “We borrow from the statistical model the
interpretation of the energy tensor in terms of fluxes,
and we make the following statement:

(flux of 4-momentum across a polarized 3-target
dSj = T ijdSj”.

Rashevsky [7] writes: “Suppose we are interested
in the general picture of distribution and motion of
energy and momentum in space and time. To describe
it, we must build, in the 4D space of events, an
appropriately selected, twice contravariant symmetric
tensor T ik, the EMT.

A local interpretation of the EMT is (sometimes)
supported by Landau and Lifshitz: “If the tensor Tik
is zero at some world point, then this is the case for
any reference frame, so that we may say that at this
point there is no matter or electromagnetic field”.

The local EMT definition gives an unambiguous
value of the infinitesimal 4-momentum (2.1) pos-
sessed by the element dV ∧

k , and this quantity is ob-
served experimentally. For example, in the case of
an electromagnetic field, the infinitesimal area da∧β ,
absorbing the electromagnetic radiation, i.e., a “black
area,” without doubt accepts the power dI, the light
pressure force dF i and the momentum dP i according
to the relations

dI = T tβ
∧ da∧β , dFα = Tαβ

∧ da∧β ,

dPα = Tαβ
∧ da∧βdt. (2.2)
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Here

Tαβ
∧ = gαγ(−FγiF

βi
∧ + δβ

γ FijF
ij
∧ /4) (2.3)

is Maxwell’s tension tensor which is the spatial part
of the EMT of Maxwell’s electrodynamics,

T ik
∧ = gij(−FjlF

kl
∧ + δk

j FlmF im
∧ /4), (2.4)

and T tβ
∧ is the Pointing vector.

Addition of any terms to the Maxwell EMT would
violate the agreement between calculated and experi-
mental results and is therefore inadmissible. We have
already paid attention to it [8].

At a necessity to determine the 4-momentum P i

of a macroscopic body or its part, or, say, the elec-
tromagnetic field in a cavity, one has to integrate the
elements (2.1) over a whole volume,

P i =
∫

dP i =
∫

T ik
∧ dV ∧

k . (2.5)

This integration does not make a problem in Carte-
sian coordinates. However, when using curvilinear
coordinates, the components of the integral (2.5) do
not form a geometric quantity (vector) for two rea-
sons: (1) Eq. (2.5) implies arithmetic addition of the
vector components dP i belonging to different spatial
points where the coordinate vectorial bases can be
not parallel. Therefore, there is no basis to which
the components of the integral could belong. (2) At
coordinate transformations xi = f i(ya) there is no
transformation law for the components of P i to the
components of P a. For these reasons, the integral
(2.5) in curvilinear coordinates is in general meaning-
less. We will call such quantities pseudovectors.

In order that integration in curvilinear coordinates
be geometrically meaningful, one should inevitably
use a two-point tensor function called a transla-
tor, Ψi′

i (x′, x) [8–10]. With its aid, before inte-
gration, one transfers the elementary vectors dP i =
T ik
∧ dV ∧

k to a certain common point x′, dP i′(x′) =
Ψi′

i (x′, x)dP i(x), the one where integration is carried
out:

P i′(x′) =
∫

Ψi′
i T ik

∧ dV ∧
k . (2.6)

The integration (2.6) is integration of the elements
Ψi′

i (x′, x)T ik
∧ dV ∧

k that are scalar at points x, and
curvilinear coordinates do not make problems.

If one carries out the integration (2.6) over a closed
3D surface which twice intersects the world tube of an
isolated body in space-time, and this integration gives
zero, ∮

Ψi′
i T ik

∧ dV ∧
k = 0, (2.7)

then there emerges an integral conservation law. Let
us transform the integral (2.7) to an integral over a 4-
volume Ω embraced by the closed hypersurface V =
∂Ω, according to the Gauss theorem (which certainly
implies partial differentiation):

0 =
∮

∂Ω
Ψi′

i T ik
∧ dV ∧

k =
∮

Ω
∂k(Ψi′

i T ik
∧ )dΩ∧. (2.8)

The resulting expression (2.8) can be simplified be-
cause the partial derivative ∂k at point x from the
vector density Ψi′

i T ik
∧ at point x is equal to a covariant

derivative: ∂k(Ψi′
i T ik

∧ ) = ∇k(Ψi′
i T ik

∧ ). Thus we have

0 =
∮

Ω
∂k(Ψi′

i T ik
∧ )dΩ∧ =

∮
Ω
∇k(Ψi′

i T ik
∧ )dΩ∧

=
∮

Ω
∇kΨi′

i T ik
∧ dΩ∧ +

∮
Ω

Ψi′
i ∇kT

ik
∧ dΩ∧. (2.9)

It is reasonable to calculate the momentum of a
body considering the translator Ψi′

i (x′, x) as that of
parallel transport. In this case, since the covariant
derivative ∇k also rests on parallel transport, in flat
space we obtain

∇kΨi′
i = 0, (2.10)

and (2.9) leads to the local covariant conservation law,

∇kT
ik
∧ = 0, (2.11)

which provides the conservation of the macroscopic
momentum P i′(x′) of an isolated body, calculated at
a fixed world point. If the world point x′ is located
on the integration hypersurface of the integral (2.6)
and moves together with it, then the vector P i′(x′)
is transported in a parallel manner. That is what is
meant by a covariant conservation law of the macro-
scopic quantity P i′(x′).

It is, however, important that if the body un-
der consideration is not isolated, or one considers a
medium subject to external influence, then the con-
servation law (2.11) is violated. In such a case the
medium EMT is such that

∇kT
ik
∧ = f i

∧, (2.12)

where f i
∧ is the density of a 4-force acting on the

medium in question from another medium or field.
This can be a Lorentz force, a force of light pressure,
or a gravitational force (not geometrized according to
Einstein). Thus, for Maxwell’s electromagnetic field
tensor interacting with electric charges and currents,
it will be

∇kT
ik
∧ = −gijFjlj

i
∧. (2.13)

The covariant derivative of the parallel transport
translator is zero (see (2.10)) in flat space where
this translator is path-independent. Indeed, let there
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be a certain covector fi′ at the point x′. Then the
translator Ψi′

i induces in a neighborhood of a point
x the covector field Ψi′

i (x′, x + ξ)fi′ , which, however,
can be obtained by the same parallel transport of the
covector Ψi′

i (x′, x)fi′ from the point x to the points
x + ξ:

Ψi′
i (x′, x + ξ)fi′

= Ψj
i (x, x + ξ)Ψi′

j (x′, x)fi′ . (2.14)

Therefore this field, Ψi′
i (x′, x + ξ)fi′ , turns out to be

covariantly constant, which is proved by (2.10). Un-
like that, if there is space-time curvature, then the
field Ψi′

i (x′, x + ξ)fi′ is not covariantly constant in a
neighborhood of a point x, ∇kΨi′

i �= 0, because it will
be different from the r.h.s. of the equality (2.14). In
this case, the local conservation law does not provide
conservation of the macroscopic momentum of the
isolated body in time. The change of the quantity P i′

applied to point x′ gives the expression∫

Ω

∇kΨi′
i T ik

∧ dΩ∧

An example of matter creation in curved space-time
was given in [11].

3. CANONICAL DEFINITION
OF THE ENERGY-MOMENTUM TENSOR

Along with the operational definition, there is
also a formal definition of matter EMT as a zero-
divergence two-index tenor density (where a partial
rather than covariant divergence is meant). To obtain
such a density, one writes down the gradient of the
matter Lagrangian [3]:

∂iΛ∧ =
∂Λ∧
∂q

∂iq +
∂Λ∧

∂(∂kq)
∂i∂kq

= ∂k
∂Λ∧

∂(∂kq)
∂iq +

∂Λ∧
∂(∂kq)

∂i∂kq

= ∂k

(
∂Λ∧

∂(∂kq)
∂iq

)
, (3.1)

using there the derivative from the Euler-Lagrange
equations,

∂Λ∧
∂q

= ∂k
∂Λ∧

∂(∂kq)
. (3.2)

After that, everything is put on a single side of
Eq. (3.1), and it turns out that

∂k T
c

k
∧i = 0, (3.3)

where the quantity T
c

k
∧i is called the canonical EMT:

T
c

k
∧i =

∂Λ∧
∂(∂kq)

∂iq − δk
i Λ∧. (3.4)

However, the very purpose causes a bewilderment.
Matter with a zero-divergence EMT is unobservable
since an observation requires interaction with an ob-
server, whereas if there is an interaction, the EMT
divergence is nonzero, see (2.12)!

A comparison of the canonical EMT (3.4) with
the operational tensor of Section 2 by using it in
equations like (2.1) causes a difficulty since the La-
grangian of an elastic substance with mechanical
tensions is not clear. To the author’s knowledge,
nobody has dealt with that. Popular is the canonical
EMT of electrodynamics,

T
c

ik
∧ =

∂Λ∧
∂(∂kAj)

∂iAj − gikΛ∧

= gij(−∂jAiF
ki
∧ + δk

j FlmF lm
∧ /4), (3.5)

obtained from the Lagrangian of a free electromag-
netic field,

Λ∧ = −FijF
ij
∧ /4. (3.6)

However, the tensor (3.5) is physically absurd as an
EMT: it is not symmetric and gives a negative energy
density in a homogeneous electric field Ex = E [12],

T
c

tt = FxtF
xt/2 = −E2/2, (3.7)

it is too unlike Maxwell’s experimentally justified ten-
sor (2.4), and its divergence, contrary to the claimed
purpose, is nonzero,

∂k T
c

ik
∧ = −gij∂jAlj

l
∧, (3.8)

and different from the divergence of Maxwell’s ten-
sor (2.13). This difference in the divergence means
that even any zero-divergence additions like ∂lΨikl,
Ψikl = −Ψilk cannot convert the canonical tensor
(3.5) to Maxwell’s tensor (2.4). And this is not to
mention that any additions to a true EMT are entirely
inadmissible.

Nevertheless, the Belinfante-Rosenfeld famous
procedure [13, 14] consists in precisely adding a
quantity like that, ∂l(AiF kl), to the canonical EMT
(3.5). This results in a tensor which we have call the
standard tensor [15]:

T
st

ik
∧ = gij(−∂jAiF

ki
∧ + δk

j FlmF lm
∧ /4)

+ ∂l(AiF kl) = T ik
∧ + Aijk

∧. (3.9)

This tensor is also nonsymmetric and is even more
absurd than the canonical one since it explicitly con-
tains the current density jk

∧, a quantity alien to the
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electromagnetic field. Naturally, neither the canonical
nor the standard tensor are used in practical calcula-
tions.

Not having obtained Maxwell’s tensor in the
framework of the canonical formalism but trying to
save the prestige of this formalism, the physicists,
using Feynman’s words [16], preferred to put on
sackcloth and ashes:

“We would like to say that we have not really
‘proved’ the Poynting formulas. How do we know that
by juggling the terms around some more we couldn’t
find other formulas for ‘u’ and other formulas for ‘S’?
The new S and the new u would be different, but they
would still satisfy

E · j = −du/dt −∇ · S.

It’s possible. There are, in fact, an infinite number of
different possibilities for u and S, and so far no one
has thought of an experimental way to tell which one
is right!”

Evidently, this very strange claim completely con-
tradicts the reality (and Section 2 of the present pa-
per), however, the idea that the field energy is uncer-
tain and nonlocalizable is offered by all textbooks. For
example:

“Localization of an energy flow leads to para-
doxes” [17].

“It is necessary to note that the [canonical] defini-
tion of the EMT T ik is essentially ambiguous” [3].

“It is clear from the definition that θμν is not, in
general, symmetric. On the other hand, neither is it
unique, for we may add a term ∂λfλμν” [18].

“We will be only interested in integral dynamic
quantities like the energy-momentum 4-vector Pα.
The structure of the tensor Tαβ , which is even am-
biguous in our presentation, is of interest by itself only
in a consistent theory taking into account gravita-
tional effects [19].

(The classical books are cited more completely
in [8].)

To finish this section, we recall Father Yelchani-
nov’s statement. Slightly adapted, it sounds like this:

“In the light of love (the canonical formalism),
Reason adopts the apparent absurds of Faith (in the
canonical formalism)”.

Besides, it is important to note in this paper that,
in the light of the above-said, the enormous con-
structions on the basis of certain Lagrangians aimed
at solving the energy problem in Einstein’s gravity
theory (see, e.g., [20]) do not look convincing.

4. A NONTENSOR CONSERVATION LAW

As was noted in Section 2, the covariant local
conservation law (2.11),

∇kT
ik
∧ = 0, (4.1)

in any curvilinear coordinates in flat space-time pro-
vides conservation (in time) of the macroscopic mo-
mentum 4-vector (2.6), created at point x′ by using
the translator Ψi′

i , that is, its independence of the
spacelike hypersurface V :

P i′(x′) =
∫

V1

Ψi′
i T ik

∧ dV ∧
k =

∫

V2

Ψi′
i T ik

∧ dV ∧
k . (4.2)

(the hypersurfaces V1 and V2 have a common bound-
ary, some closed surface).

A nontensor law using the partial divergence of a
tensor or nontensor, no matter,

∂kT
ik = 0, (4.3)

provides conservation in time of the nontensor inte-
gral quantity, the pseudovector (2.5),

P i =
∫

T ikdV ,
k (4.4)

in any space and in any coordinates. Indeed,∫

V2

T ikdVk −
∫

V1

T ikdVk

=
∮

∂Ω
T ikdVk =

∫

Ω

∂kT
ikdΩ = 0,

P i =
∫

V1

T ikdVk =
∫

V2

T ikdVk. (4.5)

There is nothing good in it, however. Between
Eqs. (4.2) and (4.5) there is an essential difference.
The vector P i′(x′) (4.2) is applied to x′ while the
four numbers P i (4.4), (4.5) are not a function of a
point; this quantity has no argument; the result of
integration (2.5), (4.4) is not applied to any specific
point in space-time and is therefore deprived of a
geometric meaning since we do not know the basis
to which the components P i refer, and there is no
law of their transformation at a coordinate change.
To feel the meaningless nature of the nontensor rela-
tions (4.3), (4.4) in curvilinear coordinates, consider a
plane with mechanical tensions. Let the tension ten-
sor be nonzero in the right halfplane and be presented
in polar coordinates r, ϕ at −π/2 < ϕ < π/2 by the
relations

T rr
∧ = r sin ϕ, T rϕ

∧ = Tϕr
∧ = cos ϕ,

Tϕϕ
∧ = 0. (4.6)
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The nontensor conservation law (4.3) is valid for this
tensor:

∂rT
rr
∧ + ∂ϕT rϕ

∧ = sinϕ − sin ϕ = 0,
∂rT

ϕr
∧ + ∂ϕTϕϕ

∧ = 0. (4.7)

Accordingly, the nontensor integral (4.4) obtained by
integration over the circle r = const does not depend
on the circle radius,

F r =
∫

T rr
∧ dl∧r =

π/2∫

−π/2

r sin ϕdϕ = 0,

Fϕ =
∫

Tϕr
∧ dl∧r =

π/2∫

−π/2

cos ϕdϕ = 2. (4.8)

These integrals pretend to give the components of the
force F i acting on an arc of radius r in this excited
halfplane and does not depend on the arc radius.
These components, however, do not determine any
direction since they are not applied to any specific
point, while a vector with the component Fϕ = 2 has
different directions in space, depending on its appli-
cation point. Therefore the pseudovector integrals
(4.10) are meaningless.

Thus our comparison of the covariant condition
(4.1) and the nontensor condition (4.3) has revealed a
meaningless nature of the nontensor condition. How-
ever, unfortunately, there is quite an opposite claim
in [3, Sec. 96], that the (covariant) equation (4.1)
does not imply conservation of anything, while a non-
tensor equation like (4.3) should be used to determine
the conserved 4-momentum of the gravitational field
together with matter contained in it. Therefore an aim
of the theory is to introduce a nontensor construction
with zero partial divergence instead of an EMT with
zero covariant divergence. We will follow the reason-
ing of [3, Sec. 96] in Sections 6 and 7.

5. THE MASS OF A SPHERE
OF PERFECT FLUID

As noted in the Introduction, it is important to cor-
rectly calculate the mass-energy of matter together
with its gravitational field. Unfortunately, there is a
problem in determining the integral 4-momentum of
a macroscopic body in curved space in general relativ-
ity (GR). And, in our view, it is not quite certain that
there is an adequate definition of this quantity. Not all
we want really exists! However, in some simple cases
such a definition is possible with the aid of a translator
and Eq. (2.6). Thus, in particular, one can find the
mass of a sphere of perfect fluid, which is important
for what follows.

Consider the (internal and external) Schwarzs-
child space-time that describes a sphere of perfect
fluid. The internal space depends on two parameters,
R and r1, where 0 ≤ r ≤ r1 ≤ R [1]:

ds2 =
(

3
2

√
1 − r2

1

R2
− 1

2

√
1 − r2

R2

)2

dt2

− 1
1 − r2/R2

dr2 − r2dθ2 − r2 sin2 θdϕ2, (5.1)

√
−g∧ =

√
−gttgrrr

2 sin θ. (5.2)

Here R is the curvature radius of space, determined
by the constant fluid density ρ = 3/(8πR2), while r1

is the coordinate of the surface where the external
Schwarzschild space is attached, depending on the
single parameter m = rg/2:

ds2 =
(

1 − 2m
r

)
dt2 − 1

1 − 2m/r
dr2

− r2dθ2 − r2 sin2 θdϕ2. (5.3)

It is seen that at smooth matching m = r3
1/2R

2.
To calculate the fluid mass energy in the sphere,

one should know the fluid EMT, and it can be calcu-
lated from the Einstein tensor:

8πT ik = Gik = Rik − gikRlmglm/2. (5.4)

The sphere is at rest, therefore, among T it only the
component T tt is nonzero, it has been calculated
in [1]. By Eq. [1, (96.7)], T t

t = ρ = 3/(8πR2).
If one uses the nontensor formula (2.5), the inte-

gral pseudovector component is obtained:

Pt =
∫

T t
t

√
−g∧drdθdϕ

=

r1∫

0

3
8πR2

√
gtt

√
−grrr

2dr · 4π. (5.5)

This is certainly not the mass of the sphere just be-
cause a mass is the absolute value of the vector P .
One could think that the mass is obtained by dividing
this quantity by the metric coefficient, P = Pt/

√
gtt.

Recall, however, that the index t is here “pseudo-
vector,” i.e., fake since it is not defined to which
point of the integration domain the pseudovector Pt

is applied. It is significant because
√

gtt changes in
the integration domain from (3

√
1 − r2

1/R
2 − 1)/2 to√

1 − r2
1/R

2. If one puts for clarity r1 = 2, R2 = 8,
m = 1/2, then

√
gtt changes from 0.57 to 0.71. That

is, first, the pseudovector component Pt (5.5) does not
help one to find the mass, and second, it turns out to
be much smaller than the mass P , Pt ≈ 0.64P for the
parameter values chosen. It is absurd to apply Pt to a
point at infinity where

√
gtt = 1.
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To obtain the correct value of the fluid mass P
let us use the fact that in this case the infinitesimal
vectors dP i are parallel to each other, therefore one
can add their absolute values which do not change
when transported by the translator to a single point
for summing. So one can readily integrate the values
dP = dPt/

√
gtt, and instead of (5.5) we obtain

P =
∫

dPt/
√

gtt =
∫

T t
t

√−g∧√
gtt

drdθdϕ

=

r1∫

0

T t
t

√
−grrr

2dr4π

=

r1∫

0

3
2R

r2dr√
R2 − r2

. (5.6)

The integration gives

P =
3R
4

(arcsin ξ − ξ
√

1 − ξ2), ξ =
r1

R
. (5.7)

Restricting ourselves to two terms in the ξ-expansion
in (5.7), we obtain

P = m

(
1 +

3r2
1

10R2
+ . . .

)
. (5.8)

The excess of P over the Schwarzschild parameter
m has been called in [3, Sec. 100] the (positive) grav-
itational mass defect. The gravitational field pseudo-
tensor, to be considered in the next section, should
insert a negative contribution to the total mass of the
system “matter + gravitational field” to make this
total mass equal to the Schwarzschild parameter m.

It is of interest that integration of Eq. (5.5) shows
that Pt is not only smaller than the mass P but also
smaller than the Schwarzschild parameter m:

P = m

(
1 − 3r2

1

10R2
+ . . .

)
. (5.9)

6. STANDARD ENERGY-MOMENTUM
PSEUDOTENSOR

OF THE GRAVITATIONAL FIELD

The idea to connect matter with geometry was
realized by Einstein when he equated the EMT of
matter, having a zero covariant divergence, to the
only geometric tensor (Einstein’s) with zero covariant
divergence:

8πT ik = Gik = Rik − gikRlmglm/2,

∇kT
ik
∧ = 0. ∇kG

ik
∧ = 0. (6.1)

Thus the gravitational field was eliminated (ge-
ometrized). All dynamic problems are being solved in
GR, but, since the gravitational field was eliminated,

the problem of its energy-momentum emerged from
the very beginning. Although everybody understood
that the notion of energy is a certain luxury, not
at all necessary for problem solving, nevertheless
there was a desire to introduce the “gravitational field
energy” in order to extend to gravity the total energy
conservation law.

To materialize the idea of energy-momentum of
the gravitational field and to define a conserved total
4-momentum of the gravitational field with matter
contained in it, a nontensor density with zero par-
tial divergence was suggested, in accordance with
a belief that a nontensor equation like (4.3) could
provide conservation of something. This density,
which we denote H i

∧k, contained first- and second-
order derivatives of the metric tensor of the coordinate
system used. In [1, (89.3)] it is brought to the form of
a partial divergence (but not from an antisymmetric
quantity, as usually happens). This density is called
the energy-momentum pseudotensor of matter to-
gether with the gravitational field:

H i
∧k = ∂lH

il
∧k = ∂l[gim

∧ (Γl
km − δl

(kΓm)

− δi
kg

mn
∧ (Γl

mn − δl
mΓn)/2]/8π,

Γm = Γn
mn. (6.2)

The partial divergence of the pseudotensor H i
∧k is

surprisingly zero in any coordinate system:

∂iH
i
∧k = 0. (6.3)

Vanishing of the covariant divergence of a tensor in
any coordinate system is not surprising. However,
here the zero partial divergence of the pseudotensor
is preserved under coordinate changes because the
geometric content of the pseudotensor itself changes
in the sense that changes the value of the contraction
H i

∧kV
∧
i V k with fixed vectors. In the case of a ten-

sor, whose geometric meaning is fixed, a zero par-
tial divergence is usually violated under coordinate
changes.

The uniqueness of the zero-divergence pseudo-
tensor (6.2) was probably not investigated, and there
is apparently no data on a pseudotensor with two
upper indices, H ij

∧ , ∂jH
ij
∧ = 0.

The expression (6.2) is called the energy-momen-
tum pseudotensor of matter with the gravitational
field because if the coordinate system used turns out
to be locally Minkowskian at a certain point of space-
time, then the pseudotensor (6.2) coincides at this
point with the Einstein tensor, hence with the EMT
of matter located at this point H i

∧k
∼= Gi

∧k/8π = T i
∧k.

(We denote by the approximate equality sign ∼= the
equalities valid at the center of a locally Minkowskian
coordinate system.) At other points the pseudotensor
differs from the matter EMT. The difference is called
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the gravitational field pseudotensor ti∧k. That is,
the pseudotensor (6.2) represents a sum of matter
EMT and the gravitational field pseudotensor: H i

∧k =
(T i

∧ + ti∧).
Materialization of the idea of energy-momentum

of the gravitational field with the aid of the pseudo-
tensor HI

∧k is contained in its following definition:

The 4-momentum of matter together with the
gravitational field is given by the integral [1, (88.4)]

Jk =
∫

V

H i
k

√
−g∧dV ∧

i

=
∫

V

(T i
k + tik)

√
−g∧dV ∧

i (6.4)

over a hypersurface V including the whole 3D space,
and the components of this integral have equal values
on two hypersurfaces V1 and V2, resting on a common
boundary in the form of a closed 2D surface due to
(6.3). That is,

Jk =
∫

V1

H i
kdVi =

∫

V2

H i
kdVi, (6.5)

as in (4.5).
Naturally, the integral (6.4) causes the criticism

presented in Section 4: the four numbers Jk (6.4) are
not applied to any specific point in space-time and
is therefore deprived of any geometry meaning, since
nobody knows a basis to which the components Jk

refer.
But let us put aside the fatal problems related to

the absence of a basis supporting the components of
Jk . Let us look how the pseudotensor (6.2) is used in
practice in the simplest case discussed in Section 4,
i.e., calculation of the mass of matter contained in a
ball together with the gravitational field.

In [1, (92.4), (97.2)] an explicit form is given for the
gravitational field pseudotensor,

ttt = 3p, (6.6)

where p is the pressure inside the ball. This pseudo-
tensor is used in Eq. (6.4) in the coordinate system
with the isotropic metric

ds2 = eνdt2 − eμ(dx2 + dy2 + dz2), (6.7)

and after a calculation, the result is presented [1,
Sec. 97]:

Jt =
∫

(T t
t + 3p)

√
−g∧dx dy dz

= Pt +
∫

3p
√
−g∧dx dy dz = m. (6.8)

This result is understandable: the pseudocomponent
Pt is smaller than m, as was noted in Section 5;
the gravitational field pseudotensor makes a positive
contribution; the resulting sum is m.

However, the pseudocomponents Jt and Pt do not
represent masses. The actual mass of matter in the
ball together with its gravitational field, in the context
of using the gravitational field pseudotensor, is given
by an expression like (5.6):

J =
∫

Ht
t

√−g∧√
gtt

dx dy dz

=
∫

(T t
t + 3p)

√−g∧√
gtt

dx dy dz

= P +
∫

3p
√−g∧√

gtt
dx dy dz > m. (6.9)

This mass is much larger than m because the mass
of matter alone is P > m. A positive contribution
from the gravitational field pseudotensor means a full
break-up of the whole construction because the pseu-
dotensor should make a negative contribution corre-
sponding to a negative gravitational mass-energy.

What is simultaneously compromised is the Ha-
miltonian approach to solving the problem of en-
ergy in GR, based on certain Lagrangians and men-
tioned at the end of Section 3. Indeed, Ref. [20]
states “a coincidence of the results of the Hamiltonian
approach and the one based on using the energy-
momentum pseudotensor in defining the total energy
in an asymptotically flat space-time”.

7. THE LANDAU-LIFSHITZ
PSEU-DO-TEN-SOR

OF THE GRAVITATIONAL FIELD

Landau and Lifshitz [3, Sec. 96] found a much
simpler construction of the pseudotensor than (6.2);
moreover, it is presented as a divergence of an an-
tisymmetric quantity, which automatically leads to a
zero partial divergence,

hik
∧∧ = ∂lh

ikl
∧∧ = ∂2

lm(−g∧∧gi[kgl]m)/8π, (7.1)

∂kh
ik
∧∧ = 0. (7.2)

Unfortunately, the pseudotensor (7.1) is a density of
weight +2, so that at space-time points where the
coordinate system used is locally Minkowskian, this
pseudotensor coincides with Einstein’s tensor density
up to the factor

√−g∧:

hik
∧∧

∼=
√
−g∧Gik

∧ /8π

= −g∧∧(Rik − gikR/2)/8π = −g∧∧T ik. (7.3)

Certainly, at other space-time points the pseu-
dotensor hik

∧∧ differs from the tensor −g∧∧T ik. The
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difference is called the gravitational field pseudotensor
tik. Thus the pseudotensor (7.1) is considered as a
sum of matter EMT and the gravitational field pseu-
dotensor:

hik
∧∧ = −g∧∧(T ik + tik), tik ∼= 0. (7.4)

Integration of the pseudotensor (7.1) over a hyper-
surface V including the whole 3D space,

J i
∧ =

∫
hik
∧∧dV ∧

k , (7.5)

represents, by definition, the whole mass-energy of
matter with the gravitational field. Unlike (6.4), the
integral (7.5) is a vector density. A calculation of
the mass-energy of a fluid sphere using (7.1) was
apparently not carried out.

In the absence of a gravitational field, in Minkow-
ski coordinates, hik

∧∧ = 0 everywhere (just as H i
∧k =

0). This means, in particular, that the integral (7.5) is
zero, in agreement with that in flat space-time there
is no matter and no gravitational field. However, in [3,
Sec. 96] it is said about the integral (7.5),

J i
∧ =

∫
(−g∧∧)(T ik + tik)dV ∧

k , (7.6)

that it is not zero in flat space but passes into∫
T ikdVk, i.e., to the 4-momentum of matter without

gravity. This contradiction has emerged due to
ambiguity of the notations. In [3, (96,7)] it is implied
that

T ik = (Rik − gikR/2)/8π, (7.7)

while in other places the tensor T ik is not related to
the space-time curvature.

The nontensor integral (7.5) causes the same ob-
jections as the integral (6.4). They are connected
with the absence of a basis that would support the
components of J i

∧. It is absurd to apply J i
∧ to a

point at infinity where
√

gtt = 1. Since a basis of
the components (7.5) is not defined, this “conserved”
integral is meaningless.

8. CONCLUSION

The energy-momentum pseudotensor does not
solve the problem of gravitational energy for two
reasons: (1) The pseudotensor has no physical
meaning due to its nontensor nature. Using an
asymptotically flat environment does not remove this
fatal diagnosis. (2) The physical meaning ascribed
to the pseudotensor is wrong because, according
to the pseudotensor expression, for example, the
gravitational field energy of a massive ball is positive.

It is possible that the notion of mass-energy of
the gravitational field is inadequate to nature, as well

as the notion of the gravitational field itself, which
is, according to Einstein’s GR, replaced by curved
space-time. It has been noticed that the mass-energy
of material systems and fields can be calculated in
curved space with the aid of translators.

Rather long ago the noncovariance of the pseudo-
tensor was discussed by M.F. Shirokov [21]: “Quan-
tization of weak gravitational fields with introduction
of special particles into the theory, i.e., gravitational
field quanta, or gravitons, is not a generally covariant
formulation of the quantum theory of particles and
fields since the employed gravitational field quantiza-
tion procedure rests on using the Lagrange function
and the energy-momentum pseudotensor which are
only covariant under Lorentz transformations.”
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