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at the expense of length contraction, and this reduces to an additional force acting on the 
test body and an additional acceleration that it can experience. 
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ENERGY EXTRACTION DURING UNIFORM LOWERING OF A BODY INTO A BLACK HOLE 

R. I. Khrapko and A. S. Mironnikov UDC 530.12:531.51 

We construct a rigid reference frame accompanying a rope that is being lowered 
uniformly into a black hole with arbitrary velocity. We calculate the work done 
at the initial point in the case of lowering a load on a weightless rope and in 
the case of lowering a homogeneous massive rope. In both cases the work turns out 
to equal the rest energy of the lowered body. 

i. INTRODUCTION 

In the well-known articles [1-3] the uniform lowering of a body on a rope into a black 
hole is studied, and in particular a calculation is presented of the work done by a moving 
rope at an infinitely distant initial point of lowering. It is shown that if we neglect 
the volume of the lowering body, then the work done equals the body's rest energy, and in 
correspondence with this the black hole does not change under such a process in accordance 
with the absence of the concept of baryon charge for a black hole. 
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If the lowered body has nonnull entropy, then its volume already cannot be neglected, 
for its volume cannot be made smaller than the volume which thermal radiation occupies for 
a given energy and entropy. Therefore in such a case the work done by the rope when lowering 
the body turns out to be less than the rest energy from the ejecting force of Hawking radia- 
tion surrounding (being evaporated) the black hole, since the surface of the black hole 
increases under such a process in correspondencewith the "generalized second law." 

However, in both cases calculation of the work is performed in [1-3] only in statis- 
tical approximation, that is for infinitely slow lowering of the body. At the same time, 
in our opinion, an exact solution is of interest for the problem of uniform lowering of 
the body into a black hole by means of construction of a rigid reference frame of an inextens a 
ible rope moving with arbitrary fixed velocity. Such a solution is obtained in the present 
article. For this Study it is convenient to imagine that the rope moving down and supporting 
the body turns the shaft of a dynamo fixed on a "Dyson sphere" constructed around the black 
hole. It is found that in the neglect of the volume of the body, the energy being extracted 
in the dynamo becomes equal to the body's rest energy at the moment the rope breaks fro~ 
infinitely large tension, and this result does not depend on the radial coordinate of the 
dynamo or on the velocity of lowering of the body. This means that the process of lowering 
the body with nonzero velocity proceeds with an increase in the generalized entropy, since 
under such a process the initial energy of the body is greater than its rest energy. 

It is of interest that a break in the rope occurs on its lower end after it slightly 
goes within the gravitational sphere. In addition the tension in the rope at all remaining 
places, in particular on the gravitational sphere itself, remains finite. The time for 
energy extraction is finite also. 

2. REFERENCE FRAME OF THE ROPE 

We introduce coordinates ~ and ~ accompanying the moving rope by means of a trans- 
formation of Schwarzschild coordinates t and r: ~(t, r), ~(t, r). We assume that the rope 
has been lowering for a very long time, so that by homogeneity of the process in time all 
four derivatives of functions T and $ must not depend on time. Therefore, these functions 
will have the form 

(t, r) = ~t't + i ~, (r) dr, ~, = r  ( 1 )  
g~ 

r 

(t, r) = ~.,. t + ~ ~ (r) dr, ~t = const.  ( 2 ) 
f~t 

The values of the integrands of derivatives Tr and $r, as well as of metric coefficient g~T 
of the expression for the interval 

d s  ~ = g , , d ~  2 - -  cl~ 2 ( 3 ) 

of coordinate system T, ~ are easy to find in function r, after writing the usual relations 
connecting metric tensors of coordinates ~, ~ and t, r. The calculation gives 

r t G %  
~, = " (4) 

( r - -  1 ) l / r ( 1  §  1 ' 

V-TVr(1 + ~ ) - - 1  ( 5 )  
r--I 

r (1 + ~ )  - l ( 6 )  

f "  ~t 
We assume that Schwarzschild radius rg = i. Constants ~t and ~t depend on the fixable veloc- 
ity of motion of coordinate time �9 and on the velocity v of the motion of the rope. r 2 is 
the coordinate of the dynamo and the observer. For purposes of the present work it is not 
necessary to calculate the integrals in formulas (I), (2). We note only that these integrals 
preserve sense also for r < i if we assume a circuit of a singular point of the integrals 
r = i ~n the complex plane of coordinate r. This leads to an imaginary component exactly 

103 



compensated however by the imaginary part of complex coordinate the gravitational sphere, 
according to [4-6]. As a result it turns out that coordinate system ~, ~ does not have a 
singularity up to r = (i + ~-z < i. 

The place where the load is fastened on the rope is world line ~ = 0. Therefore its 
velocity with respect to Schwarzschild observers (r = const) by means of formula (2) is 
expressed via ~t in the following manner: 

I/ g, ,  d r _  grr ~t ~ r 
V gtt  d t  g t t  ~ r ( l  +~)-- t 

where grr and gtt are metric coefficients of the Schwarzschild coordinate system. 

3. DYNAMICS OF THE ROPE 

First we shall assume that the rode is weightless but has mechanical tension. Such 
a representation should not cause any objections if we ignore the violation of the principle 
of energy dominance. Such a representation is used, for example, in secondary school for 
study of the mathematical pendulum (see also [7]). However, readers who do not like this 
abstraction from the weight of the rope can turn to Sec. 4, in which the lowered mass is 
uniformly distributed along the rope. Here the tensor density of the energy-momentum of 
the matter of the rope will have only one nonzero component T~g (the hat placed at the sub- 
script level indicates that the weight of the density equals +l. Therefore the local conser- 
vation law Vi T~hi = 0 for space ~, ~ with me-tric (3) immediately reduces to the important 
conclusion that T~ is independent of $. 

The quantity T~ is determined by the weight of the lowered load. Its world line g = 0 
bounds below the band representing the strained part of the rope in space ~, g. This permits 
us to associate the tension in the rope T~ with component F$ of the force of the weight of 

the load: 

= (7) 

where gTT is the value of the metric coefficient at points of the world line of the load. 
The quantity F~ in turn depends on the rest energy (mass) E0 of the load and on the curvature 
of its world line. Standard calculation gives (only one component of the 4-acceleration is 
nonzero) 

E0 
F 

= 1 /  
F1 

2r-~ v r ,  (I + ~ ) - - 1  " ( 8 )  

So that assuming (6), we get 
T~ = -- Eo/2r ~ % ( 9 ) 

We note that the modulus of force F = -F~ becomes infinity not on the gravitational sphere, 
but under it for r I = (i + $[)-I 

As can be seen, quantities (8) and (9) are given as functions of the Schwarzschild 
coordinate r l, which is considered as a parameter on the world line of the load. We shall 
denote by index i coordinates of points of this line. The line itself, ~l(rl), $I = 0 
satisfies relation 

d% = dr~ [-- % ~.~ (r)l~, + ~ (r)], (lO) 

obtained on the basis of (i) and (2). The world line of the dynamo, where the upper end 
of the rope is located, is given by relations 

r = r2 = cons t ,  d ~  = dz2~t/x t ( 1 1 )  

(points of this l'ine are denoted by index 2). Events of world lines (i0) and (ii) that are 
simultaneous from the point of view of the rope are connected by lines �9 = const, therefore, 
after setting d~ I = dT 2 in formulas (i0) and (ii), we get the relation between corresponding 
world displacements of the ends of the rope: 

dE 2 = dr1 - -  ~ -4- r = - -  d r l  ri  
�9 r~ (1 § U ) - I  

Along the line �9 = const we have 
--- - (12) 
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By formula (7) (with changed sign) from this it follows that the component of force applied 
at the upper end of the rope equals 

Eo Eo 1/ r2 
F~(r2) :  2r~t~g=(r~) 2r~ V r ~ ( l + ~ ) - I  

This makes it possible to calculate the work done in the dynamo under lengthening of the 
rope by dg 2 and corresponding displacement of the lower end of the rope by drl: 

dA = F~ (r~.) dG = _ dr Eo ] / /  r2 / r~ 
" 2r~ r 2 ( l + ~ ) - - I  ]/ r ~ ( 1 A - ~ ) - - I  

Integration of this expression over r I in the limits from r2 to r I gives 

A(rl)=E~ V r l q - ~ - -  l/rl ) q-~}-l/re 

I t  i s  obvious  t h a t  i f  t he  i n t e g r a t i o n  ex tends  up u n t i l  t he  rope  b r e a k s ,  i . e . ,  up to  v a l u e  
rz = (1 + $~)-1 then  t he  work done w i l l  e x a c t l y  equa l  the  r e s t  ene rgy  of  t he  load  i ndependen t  
of  t he  v e l o c i t y  o f  l ower ing  and c o o r d i n a t e  r2 of  the  i n i t i a l  p o i n t .  

We no t e  t h a t  fo rmula  (12) in  e s s ence  shows how T~$ depends on t ime a t  once on t he  whole 
A 

rope .  However, t h i s  does no t  a t  a l l  e s t a b l i s h  t h a t  a change in  t he  weight  of  the  body as i t  
lowers  " i n s t a n t l y  p r o p a g a t e s "  a long the  rope to  t he  dynamo. For r e a l  e f f e c t i n g  of  t he  p r o c e s s  
d e s c r i b e d  h e r e ,  t he  rope  must have a p r e v i o u s l y  programmed i n t e r i o r  s t r u c t u r e  ana logous  to  
t h a t  which makes i t  p o s s i b l e  f o r  the  b i r d s  from [8] to  e x t i n g u i s h  t h e i r  lamps s i m u l t a n e o u s l y .  
In our c a s e ,  changes in t e n s i o n  in  the  rope  T ~ ( T )  must be p r e v i o u s l y  programmed, where x i s  
t ime the  c o o r d i n a t e  a t  p o i n t s  of  the  rope  r e l a t e d  to  t he  p r o p e r t i m e  s ($ )  of  t h e s e  p o i n t s  s = 

; ] / gT -~}  where r ( z ,  $) in  t h i s  formula  i s  g iven  i m p l i c i t l y  by sys tems of  e q u a t i o n s  ( 1 ) ,  
0 
(2 ) .  Under such a c o n s t r u c t i o n  of  t he  rope ,  t he  ene rgy  in  t he  dynamo is  e x t r a c t e d  a t  t he  
moment of  " r o p e "  t ime when t he  body i s  a l r e a d y  l o c a t e d  under  t he  g r a v i t a t i o n a l  sphe re .  

4. HOMOGENEOUS MASSIVE ROPE 

In the case of uniform distribution of mass along the lowering rope, calculation of 
the work done proceeds more simply and reduces to the same result. Denoting the lin___~ear 
surface of the rope's rest energy by p = (dE0/d$) =. const, we find that T ~  p//gTT. Sub- 
stituting this value into the conservation law 7iTX I = 0, we get T~ % = --P#gTT" Then by form- 
mula (7) we can determine the component of force acting on the upper end of the rope F$ = p, 
and the work done in the dynamo dA = FSd$ = pd~ = dE0, which turns out to be equal to the 
rest energy of the lowering rope. 

i. 
2. 
3. 
4. 
5. 
6. 
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