Polarisation of Light

On the possibility of an experiment on ‘nonlocality’ of electrodynamics

R.I. Khrapko

Abstract. It has been known since the 19th century that a circularly polarised electromagnetic wave carries an angular momentum. A simple experiment (Righi, 1882) apparently indicates that the angular momentum is distributed over the entire cross section of the beam. According to some modern ideas, the angular momentum of the beam with the given polarisation is localised near the beam ‘surface’ and represents a spin of photons, while the energy in the beam is distributed throughout its cross section, which is inconsistent with the principle of locality. For the experimental determination of the localisation of the angular momentum, we propose a new scheme, in which we study the interference pattern of two coherent circularly polarised beams. Each beam first passes through a half-wave plate, because of the following.

PACS numbers: 03.50.De; 42.60.Jf; 42.25.Ja

DOI: 10.1070/QE2012v042n12ABEH014850

1. Introduction

It is well known that a beam of electromagnetic radiation with circular polarisation [1, 2],

\[E = \omega \exp(i k z - i \omega t)(x + iy + \frac{1}{k} z(i \partial_x - \partial_y))u(x,y), \]

\[B = -i k E \omega \]

Area 1 (the expression is written for the right-hand circular polarisation), carries an angular momentum [1–7]. Therefore, the body, which absorbs at least a portion of the beam and/or changes the state of its polarisation, will be subjected to a torque.

The electromagnetic field (1) satisfies the wave equation, which is widely used in the paraxial approximation. This approximation suggests a slow change in the intensity of the beam along its axis (\(\partial_z u \ll ku \)) and leads to the equation

\[\partial_z^2 u + \partial_{x}^2 u + \partial_{y}^2 u + 2k\partial_z u = 0 \] (2). In analogy with [1, 5, 6], we consider a wide beam (1) and assume that the amplitude \(u \) is constant in the central part of the beam \((u = u_0) \) and vanishes in a narrow surface layer at a distance \(R \) from its axis (see Figs 1a and 9.3 from [5], and Fig. 1 from [6]).

Beth’s experiment [3] and many modern experiments with microparticles [2, 7] confirm the existence of an angular momentum in a circularly polarised beam. Theoretically, this issue was also discussed in papers [8–10]. Unfortunately, there are no known experiments in which the distribution of the angular momentum is determined by the beam cross section. However, it is this distribution that is of special interest because of the following.

According to papers [2, 4], the z-component of the angular momentum volume density \(j_z \) and the z-component of the angular momentum flux density along the z axis, i.e., the component of the torque density \(\mu_z \), is localised near the beam ‘surface’ and are given by

\[j_z = -i \varepsilon_0 \omega \partial_x |u(r)|^2 / 2, \quad \mu_z = -c \varepsilon_0 \omega \partial_x |u(r)|^2 / 2 \] (3)

(by the beam ‘surface’ is meant a layer in which the radial intensity gradient is very large). These densities are proportional to the radial gradient of the beam intensity, while the energy density \(W \) and the Poynting vector \(S \) depend on the intensity itself:

\[W = \varepsilon_0 \omega^2 |u|^2, \quad S = c \varepsilon_0 \omega^2 |u|^2 \]

Therefore, the ratio of densities

\[\frac{j_z}{W} = \frac{\mu_z}{S} = -\frac{\partial_x |u(r)|^2}{2|u|^2} \] (4)

should vary significantly in the beam cross section.

Allen and his co-authors write: ‘Consequently, in a beam that satisfies the paraxial condition, this means that the ratio changes from place to place’ [2, p. 300]. ‘A different amount of angular momentum might be expected to be transferred at different positions in the wavefront’ [11, p. 70]. ‘At a particular local point the z-component of angular momentum flux divided by energy flux does not yield a simple value’ [7].

Simmonds and Guttman write: ‘The skin region of the [beam] is the only place in which the z-component of the angular momentum does not vanish’ [5].

Thus, \(\mu_z / S \gg 1/\omega \) in the surface layer and \(\mu_z / S = 0 \) at all other points. Hence, it is natural to conclude that a body absorbing the beam under consideration experiences a torque only in places where the surface layer of the beam is absorbed, and most of the inner region of the absorber does not experi-
ence the torque, although according to (3), it absorbs all the power of the beam.

However, Beth [3] explained the emergence of the current torque in his own way: 'The moment of force or torque exerted on a doubly refracting medium by a light wave passing through it arises from the fact that the dielectric constant K is a tensor. Consequently the electric intensity E is, in general, not parallel to the electric polarisation P or to the electric displacement $D = KE = E + 4\pi P$ in the medium. The torque per unit volume produced by the action of the electric field on the polarisation of the medium is $\mathbf{V} = \mathbf{P} \times E$. According to this reasoning, the torque is distributed evenly over the entire cross section of the beam.'

Carrara [12] also wrote: 'If a circularly polarised wave is absorbed by a screen or is transformed into a linearly polarised wave, the angular momentum vanishes. Therefore the screen must be subjected to a torque per unit surface equal to the variation of the angular momentum per unit time. The intensity of the torque is $\pm 8\pi \omega.$'

Loudon [13] is a supporter of the concept described by formulas (2) and (4). Nevertheless, he takes into account the term $\mathbf{P} \times E$ in the calculation of the impact of the beam on a dielectric (see equation (7.18) in [13]).

Feynman et al. [14] used the concept of the spin of photons with circular polarisation of light: "...the resultant electric vector E goes in a circle – as drawn in Fig. 17-5(a). Now suppose that such light shines on a wall which is going to absorb it – or at least some of it – and consider an atom in the wall according to the classical physics... The net result is that the electron moves in a circle, as shown in Fig. 17-5(b)." The electron is displaced at some displacement r, its velocity, times the component of E parallel to r.

But look, there is angular momentum being poured into this electron, because there is always a torque about the origin. The torque is $\tau = eE_0r$, which must be equal to the rate of change of angular momentum dJ/dt:

$$dJ/dt = \tau = eE_0r.$$

Remembering that $v = \omega r$, we have that $dJ/dW = 1/\omega_0$.'

Thus, according to Feynman the density of the torque μ, refers to the energy flux density on the absorbing surface S in the same way as the net torque refers to the net energy flux and the spin of the photon h refers to the photon energy $\hbar\omega$:

$$|\mu/S| = |dJ/dW| = |j/\nu| = 1/\omega_0. \quad (5)$$

To this end, the density of the torque is constant on the absorbing surface within the illuminated area, and not localised on the boundary of this area, as follows from (2).

In the spring of 1999 the problem of the angular momentum distribution over the cross section of a circularly polarised beam was discussed at the All-Moscow Seminar on Theoretical Physics headed by V.L. Ginzburg and was formulated in terms of a possible experiment [8]. Later, the problem was analysed in detail theoretically in [10].

The analysis consisted in the following. Suppose that the absorber is divided coaxially at a radius $r_1 < R$ on the inner ($r < r_1$) and outer ($r > r_1$) parts so that the surface layer of the light beam is absorbed by the outer part. The question is: Will the inner part experience the action of the torque (and rotate)? This question is crucial.

Indeed, if the inner part does not experience a torque, the spin angular momentum of the photons is absorbed in the periphery of the absorber, while the energy of the photons is absorbed by the inner part. If the inner part of the absorber experiences a torque, it would contradict formulas (2) and (4). In any case, it is interesting to investigate this problem experimentally, because both possible answers suggest a significant 'nonlocality' of electrodynamics. The scheme of the corresponding experiment is proposed and discussed in this paper.

2. The Righi experiment (1882)

Let us consider, as in Beth's experiment [3], instead of an absorbing body, a half-wave plate, which changes the handedness of the circular polarisation into the reversed one, so that the plate experiences the torque density $\mu = 2\pi$. In the Righi experiment described in [15], the plate was rotated by hand (in the plane of the plate) with angular velocity ω. Thus, work was done with the beam, which led to a change in the photon energy. A change in the photon energy means a change in the frequency of light and results in the movement of the interference fringes in the corresponding interference experiment. Interestingly, this effect can be observed in the experiment on a student optical bench with a Fresnel biprism [15].

The change of the Poynting vector $\Delta S = 2\mu_0 \omega$ causes a shift in frequency

$$\Delta \nu = \omega \frac{\Delta S}{S} = 2\nu_0 \frac{\mu_0}{S}, \quad (6)$$

where ω is the angular frequency of light. The corresponding phase shift for the time t is $\Delta \varphi = \Delta \omega t$; the phase shift per revolution of the plate ($t = 2\pi/\Omega$) has the form

$$\Phi = 4\pi \frac{\mu_0}{S} \omega, \quad (7)$$

and the interference pattern is shifted with the number of fringes

$$N = 2 \frac{\mu_0}{S} \omega. \quad (8)$$

According to the concept described by equation (2), the fringes should not shift in the inner part of the illuminated plate, because $\mu_0/S = 0$ in this region, while at the same time an extremely large shift ($N \gg 1$) should be observed in a narrow region of absorption of the surface layer of the beam, because $|\mu_0/S| \gg 1/\omega$ in this region.

3. Modification of the experiment

We hope to answer the question posed in [8], by observing the local shift of the interference fringes (8). To do this, we will use in a two-beam interferometer two half-wave plates, one of
On the possibility of an experiment on ‘nonlocality’ of electrodynamics

which is divided into the inner part (in the form of a disk) and
the outer annular part (Fig. 1a). For the experiment to be per-
formed, it is necessary to provide independent manual rota-
tion of the two parts of the plate. The half-wave plates are
varied in thickness by a small value \(a \). Because of this differ-
ence, the interference fringes are observed on the screen where
the two beams are superimposed.

The calculation of the difference of the optical paths is
shown in Fig. 2. If \(\alpha \) is the angle of incidence of light, the
optical path \(ABC \) is equal to \(an/\cos \beta + a(\tan \alpha - \tan \beta)\sin \alpha \) \(n \) is the refractive index), and the corresponding path \(AD \) through
the air is equal to \(a/\cos \alpha \). The condition of constructive
interference is given by
\[
\frac{an}{\cos \beta} + a(\tan \alpha - \tan \beta)\sin \alpha - \frac{a}{\cos \alpha} = m\lambda, \quad n = 1.55, \quad \Delta n = n_o - n_e = 0.009. \tag{9}
\]

If \(\sin \alpha \approx \alpha \), and \(\cos \alpha \approx 1 - \alpha^2/2 \), equation (9) yields
\[
n - 1 + \alpha^2(n - 1)/(2\alpha) = m\lambda/a. \tag{10}
\]

Omitting the constant term \(n - 1 \), we obtain the angular
size of the ring with the number \(m \)
\[
\alpha_m = \sqrt{\frac{2\pi \lambda m}{(n - 1)a}}. \tag{11}
\]

Let \(\lambda = 630 \text{ nm} \) and a quartz half-wave plate be used, i.e.,
\(n = 1.55, \Delta n = n_o - n_e = 0.009 \). Then, the minimum thickness
of the half-wave plate, at which the handedness of the circular
polarisation is reversed, is equal to \(l_{1/2} = \lambda/(2\Delta n) = 35 \mu \text{m} \). If
we put \(a = 17 l_{1/2} = 595 \mu \text{m} \), then \(\alpha_m = 0.0772\sqrt{m} \) and \(m_{\text{max}} \leq
167\alpha_{\text{max}}^2 \). According to Fig. 1b, the angle \(\alpha_{\text{max}} \approx 10^\circ = 0.175 \); therefore, \(m_{\text{max}} = 5 \). These five rings are shown in Fig. 3.

According to (5), we expect the shift of the interference
fringes (8) to be equal to 2, when the inner part of the plate
makes a complete revolution. According to (4), we expect a
large shift of the fringes on the edge of the illuminated area
when the outer part of the plate is rotated. As far as we can
judge by the report [15], the shift of the interference fringes
in the inner illuminated area really was 2 per revolution of the
undivided plate. In this case, perhaps, a large shift of the fringes at the boundary of the illuminated region was unnoticed.

Acknowledgements. I am deeply grateful to Prof. Robert H. Romer for valiant publishing of my question [8] (submitted on 7 October 1999) and to Prof. Timo Nieminen who drew my attention to paper [15].

References
Addition

Unfortunately, this paper was rejected many times groundlessly. Please see a part of the history of the rejections.

Applied Optics. March 02, 2009
Applied Optics is not the appropriate forum for this interesting theoretical discussion.
Scott Tyo Topical

I have had the "pleasure" of reviewing a large number of papers by this author on his alternative theory of optical angular momentum. At one stage, I recall, his manuscripts proudly proclaimed the long list of journals that had rejected his work. The author believes that there is an additional spin angular momentum for the photon, that is not present in standard (Maxwell-based) theory and all of his papers that I have seen are based on this, shall we say "dubious" idea. The conventional (Maxwell and Poynting - based) theory of optical angular momentum is in excellent agreement with all recent experiments and there is no need for any correction of the type envisaged by the author. Jonathan Marangos

New Journal of Physics. August 07, 2009
We do not publish this type of article in any of our journals and so we are unable to consider your article further. Sarah Ryder, Dr Tim Smith, Dr Elena Belsole, Rosie Walton, Dr Chris Ingle

Physical Review A. August 18, 2009
The Physical Review publishes articles in which significant advances in physics are reported. Such advances must be placed in the context of recent developments in research. There is no discussion in your manuscript of how this work relates to other current physics research and adequate references to the recent research literature are lacking. Your manuscript therefore is too pedagogical for the Physical Review. Gordon W.F. Drake

Your paper has not been considered for publication in this current form. Hyungsuck Cho.

Physics Letters A. December 26, 2009
Your theoretical paper does not contain the physical results which need an urgent publication in Physical Journal of Letters. Vladimir M. Agranovich.

Journal of Modern Optics January 13, 2010
The author has clearly failed to understand the phenomenon of the transfer of spin angular momentum to a birefringent optical element. A clear and rather straightforward account of this may be found, for example, in reference [5] for the manuscript. The author's "solution" to his "problem" is no less than to change the laws of electrodynamics, something for which there is no need and no evidence. Jonathan Marangos

Optics Communications. January 18, 2010
The author demonstrates his complete lack of understanding of the phenomenon of the transfer of angular momentum form a light beam to a birefringent element. He maintains, totally erroneously, that conventional Maxwell theory fails to account for this effect, something that is clearly explained in reference [5]. The author's "solution" to his "problem" is nothing less than a re-formulation of electromagnetism, something for which there is both no evidence and no need. The paper is just plain wrong and needs to be rejected.
The author is very proud of the fact that a previous idiotic paper was turned down over a hundred times. His arguments are confused and wrong; he is insulting to others whose work he does not understand. He inserts bits of referees comments into his next submission while not understanding them or learning anything.

Wolfgang Schleich

Optics Letters. February 23, 2010
As we've stated in the past, we will not reconsider your work for publication in this or any other OSA journal. Please submit your paper elsewhere. Sincerely, **Optics Letters Manuscripts Office**

Foundations of Physics. May 04, 2010
I must inform you that, based on the advice received, the Editors have decided that your manuscript cannot be accepted for publication in Foundations of Physics. Below, please find the comments for your perusal. **Gerard 't Hooft**
The comments and my objections, please, see at http://khrapkori.wmsite.ru/ftpgetfile.php?id=45&module=files

American Journal of Physics. May 25, 2010
You propose to do an experiment that you claim is easy to do, but don't do it as far as I can tell. At least I don't see any experimental data. Thus, your work would not be appropriate for an educational journal such as AJP. **Jan Tobochnik, Harvey Gould**

The proposed experiment is useless; its result is easily predicted. Everything is based on misunderstanding. The author assumes that the absorption of photons occurs locally (where the energy density is the biggest). In fact, the process of absorption is nonlocal (best illustration: absorption of extended radiation by a small atom). **Witold Dobrowolski**

PRA. January 05, 2012
The author does not make an effort to put the question into a context of current research or developments. The manuscript addresses an already ten-year old partial discussion between the author (ref [12]) and Allen and collaborators (ref [11]). **M. Gaarde & G. Drake.**

This presents some elementary calculations and proposes a simple experiment but does not carry it out. If the experiment is carried out, the paper might merit publication in a pedagogical journal. **Raminder Shergill**