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It is shown that the standard Lagrange formalism does not give the Maxwell energy-momentum tensor 

of electrodynamics and, to make matter worse, gives the false impression that an electrodynamics’ spin 
tensor equals zero! A modified use of the canonical energy-momentum and spin tensors has led to an 
electrodynamics’ spin tensor. A series of theoretical and experimental works confirms reality of the spin 
tensor and proves, in particular, that a circularly polarized light beam with plane phase front carries an 
angular momentum flux, which equals two power of the beam divided by the frequency. This fact 
contradicts the standard electrodynamics, which predicts the beam’s angular momentum flux equals power 
of the beam divided by frequency, and means the electrodynamics is incomplete.  
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1. Does electrodynamics’ spin tensor exist? 

As is well known, photons, i.e. electromagnetic waves, carry spin, energy, momentum, and angular 
momentum that is a moment of the momentum relative to a given point or to a given axis. Energy and 
momentum of electromagnetic waves are described by the Maxwell energy-momentum tensor (density) 

4/αβ
αβ

λµµν
αν

λαλµ +−= FFgFFgT ,                                       (1.1) 

where ,  is the field strength tensor. For example, νµµν FF −= νβµα
αβ

µν ggFF = 0iT  is a volume density of 

the momentum (quantity of moion) of electromagnetic waves, i.e.,  is the 
momentum of waves inside of the infinitesimal volume , and  is the 

momentum of waves inside of the arbitrary volume V.  

dVdVTdP ii BE×== 0

dV ∫∫ ×==
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ii dVdVTP BE0

iT 0  is a flux density of energy, i.e., 
 is the energy that has flowed through the infinitesimal area  in the time 

, and  is the energy that has flowed through the arbitrary area a in the 

time . (We duplicate the tensor notations by the vector notations when it is possible). We set 
.  

dtddtdaTdW i
i aBE ⋅×== )(0

ida
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aa i

i dtddtdaTdW aBE )(0
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100 =µ=ε=c

An interaction between electromagnetic waves and substance is described by a divergence of the 
energy-momentum tensor , i.e. by the Lorentz force density, viz., λµ

µ∂ T
λβ

βµβ
µλβλµ

µ
λ =∂=−∂= FjFFTf .                                                     (1.2) 

The Maxwell equations .are used here. βµβ
µ

µνλ =∂=∂ jFF ,0][

The angular momentum that is a moment of the momentum can be defined as [1] 

∫∫ ××==
VV

jiij dVdVTxL )(2 0][ BEr ,                                          (1.3) 

and this construction must be named as an orbital angular momentum. However, the modern 
electrodynamics has no describing of spin, though a concept of classical spin, which differs from the 
moment of momentum, is contained in the modern theory of fields. Unfortunately, the concept of spin is 
smothered in the standard electrodynamics as will be shown below. 

Realy, the electrodynamics starts from the canonical Lagrangian [2 (4-111)], . 4/µν
µν−= FF

c
L

Then, by the Lagrange formalism, the canonical energy-momentum tensor [2 (4-113)] 

4/
)(

αβ
αβ

λµµα
α

λλµ

αµ
α

λλµ +−∂=−
∂∂

∂
∂= FFgFAg

A
AT

c c

c L
L

                                (1.4) 

and the canonical total angular momentum tensor [2 (4-147)] 

 
1



λµννµλλµν

ccc
TxJ Υ+= ][2                                                                          (1.5) 

are obtained. Here 

νµλ

αν

µ
α

λλµν −=
∂∂

∂
δ−=Υ ][][ 2

)(
2 FA

A
A

c

c
L

,                                                         (1.6) 

is the canonical spin tensor [2 (4-150)]. Its space component is AE× : 
AE×=Υ 0ij

c
,                                                                             (1.7) 

The sense of a spin tensor λµνΥ  is as follows. The component 0ijΥ  is a volume density of spin. This 
means that  is the spin of electromagnetic field inside the spatial element . The component 

 is a flux density of spin flowing in the direction of the  axis. For example, 
 is the z-component of spin flux passing through the surface element 

 per unit time, i.e. the torque acting on the element. 

dVdS ijij 0Υ= dV
ijkΥ kx

z
xyzxyxy

z daddtdSdtdS Υ=τ== //

zda
The sense of a total angular momentum tensor, , is that the total angular momentum in an element 
 is . The corresponding integral is 

λµνJ
νdV ν

λµν
ν

νµλ
ν

λµνλµ Υ+== dVdVTxdVJdJ ][2

∫ ∫ ν
λµν

ν
νµλλµλµλµ Υ+=+=

V V
dVdVTxSLJ ][2 .                             (1.8) 

It consists of two terms: the first term involves a moment of momentum and represents an orbital angular 
momentum; the second term is spin. It must be emphasized that a moment of momentum cannot represent 
spin. This idea is discussed in the paper [3], which was written in response to [4] 

However, the canonical tensors (1.4), (1.5), (1.6) are not electrodynamics tensors. They obviously 
contradict experiments. For example, consider a uniform electric field: 

EAFFAAExA x
x

xx −=∂=−==∂=−= α
α 0

0
00 ,0,0, .                           (1.9) 

The canonical energy density (1.4) is negative: 
2/2/ 20

0
0000 EFFgT x

xc
−== .                                        (1.10) 

Another example: consider a circularly polarized plane wave (or a central part of a corresponding light 
beam), 

),cos(),sin(),sin(),cos( tzBtzBtzEtzE yxyx −=−=−−=−=      (1.11) )cos(),sin( tzAtzA yx −=−=
(for short we set ). A calculation of components of the canonical spin tensor (1.6) yields 1=ω=k

1,10 =Υ=Υ xyz

c

xy

c
,   ,   .           (1.12) )(sin 2 tzBA x

xzxy

c
−==Υ )(cos2 tzBA y

yyzx

c
−==Υ

This result is absurd because, though  and  are adequate, the result means that there are spin fluxes 

in - directions, i.e. in the directions, which are transverse to the direction of the wave propagation. 

0xy

c
Υ xyz

c
Υ

xy &
An opinion exists that a change of the Lagrangian can help to obtain the Maxwell tensor (1.1). A. 

Barut [5] presented a series of Lagrangians and field equations in Table 1 
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However, A. Barut did not show energy-momentum and spin tensors corresponding to these 
Lagrangians. So, we add Table 2 

Table 2 
Electrodynamics’ Lagrangians, Energy-Momentum Tensors, and Spin Tensors 

Lagrangian Energy-momentum tensor Spin tensor 
4/µν

µν−== FFLL
cI  4/, σν

σν
λµµνλ

ν
λµλµ +−== FFgFATT

cI
νµλλµνλµν −=Υ=Υ ][2 FA

cI  

2/)(4/ 2
,µ

µµν
µν −−= AFFLII  2/)( 2

,,
,

σ
σλµ

σ
σλµλµλµ +−= AgAATT III σ

σνµλλµνλµν +Υ=Υ ,
][2 AgAIII

2/,
,

ν
µν

µ−= AALIII  ρσ
ρσ

λµµσλ
σ

λµ +−= ,
,

,, AAgAATIII  νµλλµν =Υ ],[2 AAIII  
σ

σ
µν

µν −−= jAFFLV 4/  σ
σ

λµλµλµ += jAgTT IV  λµνλµν Υ=Υ IV  

It is clear, none of these energy-momentum tensors is the Maxwell tensor. And what is more, none of 
these tensors differs from the Maxwell tensor by a divergence of an antisymmetric quantity. In other words, 
none of these tensors has true divergence (1.2). A method is unknown to get a tensor with the true 
divergence in the frame of the standard Lagrange formalism. A desire for such a tensor led Professor Soper 
to a mistake [6]. He used Lagrangian , but, instead of the tensor , he arrived at a false tensor [6, 
(8.3.5) – (8.3.9)] 

VL λµ
VT

µλλµλµ += jATT If
,                                                                 (1.13) 

which differs from the Maxwell tensor by a divergence of an antisymmetric quantity: 
)( µαλ

α
µλµαλ

α
λµλµ FAjAFATT

f
∂=−∂=− .                               (1.14) 

In the frame of the standard procedure, a specific terms,  
2/~ λµν

ν
λµ Υ−∂=

st
t                                                     (1.15) 

and  
)~( ][ νκµλ

κ
λµν Υ−∂= xm

st
,                                                (1.16) 

are added to the canonical tensors (1.4) and (1.5) [7, 8] (here ). This 

procedure gives a standard energy-momentum tensor  and a standard total angular momentum tensor 

, 

µνλνλµµνλλµνλµν −=Υ+Υ−Υ=Υ FA
ccc

def
2~

λµ

st
T

λµν

st
J

)(4/ µνλ
ν

αβ
αβ

λµµν
ν

λλµλµλµ ∂++−∂=+= FAFFgFAtTT
stcst

,                           (1.17) 

)( ][ νκµλ
κ

λµνλµνλµνλµν ∂+=+= FAxJmJJ
cstcst

.                                         (1.18) 

Unfortunately, the energy-momentum tensor  (1.17) is obviously invalid, as well as the canonical 

energy-momentum tensor (1.4). So, the (Belinfante-Rosenfeld) procedure [7, 8] is unsuccessful, and the 
tensors (1.17), (1.18) are never used. But the worst thing is found out when calculating of the standard spin 
tensor , where the spin addend is  

λµ

st
T

λµνλµνλµν +Υ=Υ
stcst
s

νλµκνµλ
κ

νκµλ
κ

νκµλ
κ

νκµ
κ

λνκµλ
κ

νµλλµνλµν −=δ−=δ=Υδ−=Υ∂+Υ−∂=−= ][][][][][][][ 222~~)~(2 FAFAFAxxtxms
ststst

 
λµννµλ Υ−==

c
FA ][2                           (1.19) 

So, we see the procedure gives a standard spin tensor which equals zero! I.e. the procedure eliminates 
classical spin at all: 

0=+Υ=Υ λµνλµνλµν

stcst
s .                                            (1.20) 

That is why a spin term is absent in Eq. (1.22).  
Note that the addends , though they are unsuitable, satisfy an important equation λµνλµ

stst
st &
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][λµλµν
ν =∂

stst
ts .                                            (1.21) 

In spite of the fact that the standard spin tensor is zero, physicists understand they cannot shut eyes 
on existence of the classical electrodynamics’ spin. And they proclaim spin is in the moment of the 
momentum (1.3). I.e., the moment of momentum represents the total angular momentum: orbital angular 
momentum plus spin. I.e., equation (1.3) encompasses both the spin and orbital angular momentum density 
of a light beam [2, 4, 9 - 12]:  

∫=+=
V

jiijijij dVTxSLJ 0][2 ∫ ××=
V

dV)( BEr .                             (1.22) 

In the end, it is important to point out that an addition of any term to an energy-momentum tensor, 
including the addition of a divergence-free term like 2/~ λµν

ν Υ∂−
c

 (see, e.g. [12, (3.36)]), changes the 

energy-momentum distribution and changes the total 4-momentum of the system when the field does not 
change. Really, it is easy to express the energy-momentum tensor of an uniform ball of radius R in the form 
of . λµν

νΨ∂

)(3/),(3/ 3300000000 RrrxRRrx iiiiii >ε=Ψ−=Ψ<ε=Ψ−=Ψ                      (1.23) 
give 

)(0),( 00000000 RrTRrT i
i

i
i >=Ψ∂=<ε=Ψ∂= .                        (1.24) 

 
2. Electrodynamics’ spin tensor exists 

Contrary to the Belinfante-Rosenfeld procedure, which eliminates spin, we modify the invalid canonical 
tensors (1.4) – (1.6) by another way [13 - 19]. In contrast to the procedure [7, 8], we use other addends to the 
canonical energy-momentum and spin tensors. Our addends are 

µνλ
ν

λµ ∂= FAt ,                                             (2.1) 
νµλλµν ∂= AAs ][2 ,                                           (2.2) 

instead of (1.15), (1.19).  gives the Maxwell tensor (1.1)  λµt
µνλ

ν
λµλµ ∂+= FATT

c
,                                          (2.3) 

and  is obtained from the equation  λµνs
][λµλµν

ν =∂ ts ,                                                 (2.4) 
which is analogous to (1.21). As a result, we arrive at a quantity  

νµλλµνµνλ ∂+Υ=∂ AAAA
c

][]||[ 22 ,                                         (2.5) 

instead of the zero, and, at long last, at our spin tensor: 
][][ µνλµνλλµν Π∂Π+∂=Υ AA .                                         (2.6) 

Here  and  are magnetic and electric vector potentials which satisfy , 
,  where 

λA λΠ 0=Π∂=∂ λ
λ

λ
λ A

µννµ =∂ FA ][2 αβ
µναβνµ −=Π∂ Fe][2 βααβ −= FF ,  is the field strength tensor of a 

free electromagnetic field. It is evident that the conservation law, , is held for a free field.  
νβµα

αβ
µν ggFF =

0=Υ∂ λµν
ν

In other words, we introduce a spin tensor λµνΥ  into the modern electrodynamics, i.e. we complete 
the electrodynamics by introducing the spin tensor, i.e. we claim the total angular momentum consists of the 
moment of momentum (1.3) and a spin term, equation (1.22) is wrong, the moment of momentum (1.3) does 
not contain spin at all and, in reality, 

∫ Υ+=+=
V

ijjiijijij dVTxSLJ )2( 00][ ∫ ∫ Υ+××=
V V

ij dVdV 0)( BEr .               (2.7) 

The difference between our statement (2.7) and the common equation (1.22) is verifiable. The 
cardinal question is, what angular momentum flux, i.e. torque dtdJ /=τ , does a circularly polarized light 
beam of power P  without an azimuth phase structure carry? The common answer, according to (1.22), is  

ω==τ P/dtdJ / ;                                                       (2.8) 
our answer, according to (2.7), is 

ω==τ P/2/ dtdJ .                                                     (2.9) 
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Statements (2.8) & (2.9) are also valid in the case of plane waves or a beam which is much larger 
than the particle under action if P  is the power absorbed by the particle. 
 
3. Theoretical confirmation of (2.9) 

3.1. Consider a wide circularly polarized light beam, which is absorbed by a black plane. According 
to the standard electrodynamics, i.e. to (1.22), tangential forces, which provide angular momentum acting on 
the plane, act only in the region of the beam surface [1, 6, 9]. However, it is obviously that a couple acts on 
any small area of the central alight zone of the plane because the plane absorbs a spin flux density. So, 
according to the conservation law, the edge of any small area must experience compensative tangential 
forces from the rest of the surface. These tangential stress in the central alight zone is beyond the standard 
electrodynamics. Only spin tensor (2.6) provides this stress [19]. 

3.2. To verify statements (2.8), (2.9), we use the angular momentum conservation law. We have 
calculated the torque acting on a dielectric absorbing the circularly polarized light beam. We use the 
standard formula  

|])()([| ∫ ×+××+∇⋅×=τ dVEPBjrEPr                                  (3.1) 

[see, for example, [10] eqns. (5.1) & (7.18)]. Here EP )1( −ε=  is the polarization,  is the 
displacement current,  is the moment of the total Lorentz force per unit volume, and 

 is the torque on electric dipoles per unit volume [20]. The point is the accurate calculation gives the 
torque (2.9), , [16]. At that, we have had for the first two terms and for the last term 

Pj t∂=
)()( BjrEPr ××+∇⋅×

EP×
ω=τ P/2

|)]()([| ∫ ××+∇⋅× dVBjrEPr || ∫ ×= dVEP ω= P/ .                                    (3.2) 
Loudon [10] calculated the torque exerted by a light beam on a dielectric as well. He used formula 

(3.1) as well, and he obtained  
|)]()([| ∫ ××+∇⋅× dVBjrEPr ω= P/                                     (3.3) 

[see his formulae (7.19) – (7.24)]. But he omitted EP×  term without explanations, and  was his finish 
result for the torque. Taking into account the 

ωP/
EP×  term, he must obtain our result  (2.9), (3.1). ωP/2

It is important to note [19] that the central part of 
the beam produces a torque at the central region of the 
dielectric due to the spin of the beam,  

||spin ∫ ×=τ dVEP ω= P/

|)]()([|orbit ∫ ××+∇⋅×=τ dVBjrEPr

,                     (3.4) 
and the wall of the beam produces an additional torque 
due to the orbital angular momentum of the beam. 

ω= P/ .    (3.5) 
 
4. Experimental confirmation 

4.1. The work of Simpson at al. [21] rather confirms 
our result (2.7), (2.9) as well. The authors trapped  ~2-

m-diameter Teflon particles by a  beam of µ 1l
0pLG =

= λ  = 

1047 nm and power P = 25 mW. If the  beam is 
linearly polarized, it carries an orbital angular momentum 
flux of P . In this case the trapped 
particles were rotated with the rotational rate 

1l
0pLG =

=

J104.1/ 17−⋅=ω
sec/13=Ω , 

according to Fig. 2 from [21] (our Fig.1). This implies 
that the torque on the particles was 

 (formula (3) from 
[21], here η kg/m sec is the viscosity, m is 
the particle radius), and the authors suggested that the 
particle absorbed about ~2.3% of the power, i.e. 

ω=⋅=Ωπη=τ − P/0.023J103.38 193r
310−= 610−=r

PP 023.0=∆ . However, this conclusion probably needs to 

 
5



be corrected. The point is a Laguerre-Gaussian beam can exert a torque on particles not only when 
absorbing, but also when being converted into Hermite-Gaussian beams.  

Allen et al. show that a torque exerts on a converter of a Laguerre-Gaussian beam when converting 
(FIG. 1 from [22], our Fig. 2) because the converter change the phase difference between the Hermite-

Gaussian modes that constitute the Laguerre-
Gaussian beam (see Figure 13 from [23]). 
Because the particles had an irregular form, and 
because ~98% of  beam passed through 
the particles in the experiment, it was inevitably 
that a part of the  beam was converted into 
HG modes. If this part was at least 1.2%, the 
absorption of 

1l
0pLG =

=

1l
0pLG =

=

PP 012.0=∆  only, instead of 2
could provide the torque 3.3=τ

.3%, 
19−⋅ . J10

The main point of the Simpson’s 
experiment [21] was a cessation of rotating of the 
particles when the linearly polarized  
beam became a circularly polarized one if the 
handedness was opposite to the rotation sense. 
Thus, we must conclude that the torque 
associated with the circular polarization equals 

1l
0pLG =

=

ω∆ /2 P  because τ . 
In any case, because of the possible LG  
conversion, we must conclude that the angular 
momentum flux related with the circular 
polarization is larger than P .  

ω⋅=⋅= − /012.02J103.3 19 P
→

=
=

HG

ω/
4.2. The recent work [24] confirms rather the formulae (2.7), (2.9) as well. In this work a linearly 

polarized LG  beam of λ  = 1064 nm and power of P = 20 mW rotates a trapped polystyrene elongated 
particle with 

2l
0p
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the rotational rate =Ω1 2.5 Hz, and, when circularly polarized, the beam 
rotates the particle with =Ω2 3.0 Hz, according to Figures 3 and 2 from 
[24] (see our Fig 3 and 4). This increase in the angular velocity, ∆Ω  = 
2π0.5/sec, causes the corresponding increase in the drag torque acting on 
the rotating particle (formula (3) from [24]): 

J (here m is the particle parameter). 
On the other hand, the increase in the drag torque is provided with 
change in the degree of circular polarization 

193 102.112 −⋅=∆Ωπη=τ∆ a 610−=a

σ  of the beam as the beam 
passes through the particle. This change is determined by signals of 
photo-detectors 1 and 2 (see the fragment of Figure 1 from [24] in our 
Fig. 5.). 

The point is an elliptically polarized beam consists of right and left 
circularly polarized constituents. The electrical field may have the form 

2/)] 0Eiy−()()[exp( itiikz xyxE β++αω−= ,           (4.1) 

where 2/0Eα  and 2/0Eβ  are the amplitudes of the circularly 
polarized constituents. The degree of circular polarization of the beam is defined as  

22

22

β+α
β−α

=σ .                                     (4.2) 

To determine  and β , the authors send the beam to a circular polarization detection system consisting of 
the λ  plate, the polarizing beam splitter cube, and the photo-detectors. The 

α
4/ 4/λ  plate converts a 

circularly polarized constituent to a linearly polarized constituent by introducing 2/π  phase shift of y-
components, i.e. by multiplying the y-components in (4.1) by i. 

2/)]()()[exp(2/)]()()[exp( 00 EtiikzEiitiikz yxyxEyxyxE +β+−αω−=→−β++αω−= .   (4.3) 
According to Fig. 4, the input polarization is 1, 

and the output polarization is 0.9982 – 0.0012 = 0.997. 
I.e.  = 0.003. These results mean that 

J (here P = 20 mW and 
/sec). So, we have, according to 

[24],  instead of 

σ∆

19103.0/ −⋅≅ωσ∆ P
15109.1/2 ⋅=λπ=ω c

ωσ∆≅τ∆ /4 P ωσ∆=τ∆ /2 P , 
according to eqn. (2.9), and instead of ωσ∆=τ∆ /P , 
according to eqn. (2.8). This sizeable polarization 
contribution to the total torque confirms our statement 
(2.9). 
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4.3. In the work [11], a pure Gaussian circularly polarized beam nm)1064( =λ rotates a trapped 
birefringent particle with  when the output polarization of the beam is 

, i.e. . FIG. 2 from [11] (our Fig.6) shows this, but the radius of the particle and 
the power of the beam are not given in the paper. However, as one can understand from the text and from 
FIG. 3 of [11], the radius was 

sec/590294 =π⋅=Ω
8.01.09.0 =−=σ 2.0=σ∆

m2.1 µ=r  and the power was P = 100 mW. From this assumption we get 
J and . So, 17101.1 −⋅=ωσ∆ P/ J106.28 173 −⋅=Ωπη=τ r ωσ∆=τ /4.2 P , which is rather in accordance with 

(2.9). 
4.4. We are interested in works that show how a trapped particle rotates simultaneously around its own 

axis and around the beam’s axis (due to orbital angular momentum). So we consider the paper [25]. As is 
shown in FIG. 1 of the paper (our Fig. 7), a particle of a radius approx m1µ=r rotates around its own axis 
with rotational rate  and around the beam’s axis with rotational rate  along a 
circle of radius . The beam is a circularly polarised high-order  Bessel beam (HOBB) of 

. The azimuthal component of the linear momentum density,  (formula (2) of [25]), 

yields the azimuthal force on the particle of  (we set 

sec/18own =Ω sec/4.2orbit =Ω
m9.2 µ=R 2J

2=l Rlup /2ω=φ

RrluF /22πω=φ 10 ==ε c ). But, according to the 

Stokes’s law, . So we have  and  rvF πη=φ 6 rvRrlu πη=πω 6/22

22
orbit 6// RrluRv ηω=Ω= .                                           (4.4) 

At the same time, -component of the Poynting vector is . So, the power impinging on the 

particle is . If we use formula (3) from [21], , we can obtain 

z 22uω

222 ru πω=P own
38 Ωπη=τ r 22

own
38

ru
r
πω
Ωπη

=
ω
τ

P/
. 

By the use of (4.4) we arrive at 

3.2
3
4

2
orbit

2
own =

Ω
Ω

=
ω
τ

R
rl

P/
                                              (4.5) 

that confirms our formula . ω=τ P/2
4.5. Authors of the interesting work [26] also deal with probe particles, which rotates around their 

own axises and around the beam’s axis. Unfortunately, this work is not quantitative one. Nevertheless, this 
work confirms an extremely sizeable contribution from the circular polarization of a beam. The authors 
watched a rotation of a calcite fragment around its own axis due to σ  and could not observe this fragment 
orbiting though they used a Laguerre-Gaussian beam of . )LG(8 8l

op
=
==l

 
5. Supplement  

The theoretical confirmation 3.1 may 
be simplified. Consider a very simple one-
dimensional example. Let a rod experience a 
distributed torque because of applying a set of 
couples τ  (Fig. 8). It is evident that any piece 
of the rod experiences forces xF ∆τ∆= /  
acting on ends of the piece. So a constant 
shear stress is in the rod as well as the c
stress is in the central alight zone [19]  
 

onstant 
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This paper conveys new physics. We
 existing works concerning 

electrodynamics spin and indicate t
theory is insufficient to solve spin problems because spin tensor of the modern electrodynamics is zero. Th
we show how to resolve the difficulty by introducing a true electrodynamics spin tensor. Our spin tensor 
doubles a predicted angular momentum of a circularly polarized light beam without an azimuth phase 
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structure. The tensor is needed, in particular, for understanding of a rotating dipole radiation [18]
mechanical action of a circularly polarized beam [19]. 
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