Inevitability of the electrodynamics’ spin tensor
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It is shown that the standard Lagrange formalism does not give the Maxwell energy-momentum tensor
of electrodynamics and, to make matter worse, gives the false impression that an electrodynamics’ spin
tensor equals zero! A modified use of the canonical energy-momentum and spin tensors has led to an
electrodynamics’ spin tensor. A series of theoretical and experimental works confirms reality of the spin
tensor and proves, in particular, that a circularly polarized light beam with plane phase front carries an
angular momentum flux, which equals two power of the beam divided by the frequency. This fact
contradicts the standard electrodynamics, which predicts the beam’s angular momentum flux equals power
of the beam divided by frequency, and means the electrodynamics is incomplete.
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1. Does electrodynamics’ spin tensor exist?

As is well known, photons, i.e. electromagnetic waves, carry spin, energy, momentum, and angular
momentum that is a moment of the momentum relative to a given point or to a given axis. Energy and
momentum of electromagnetic waves are described by the Maxwell energy-momentum tensor (density)

TH =—g™F, F* + g"FF*/4, (1.1)
where F*" =—F" F,  =F“g,g,, isthe field strength tensor. For example, T'* is a volume density of
the momentum (quantity of moion) of electromagnetic waves, i.e., dP' =T"°dV =ExBdV is the
momentum of waves inside of the infinitesimal volume dV , and P’ = L TdV = LE xBdV is the

momentum of waves inside of the arbitrary volume V. T is a flux density of energy, i.e.,
dwW =T %da,dt = (ExB)-dadt is the energy that has flowed through the infinitesimal area da, in the time

dt,and dw = IT “da,dt = J'(E x B) - dadt is the energy that has flowed through the arbitrary area a in the
time dt. (We duplicate the tensor notations by the vector notations when it is possible). We set
C=g, =W, =1.
An interaction between electromagnetic waves and substance is described by a divergence of the
energy-momentum tensor 0, T “i.e. by the Lorentz force density, viz.,
fr=-0,T" =F"o"F = j,F". (1.2)
The Maxwell equations o, F,,, =0, 0"F = j,.are used here.
The angular momentum that is a moment of the momentum can be defined as [1]
Li = L 2xIT gy = L rx(ExB)dV , (1.3)
and this construction must be named as an orbital angular momentum. However, the modern
electrodynamics has no describing of spin, though a concept of classical spin, which differs from the

moment of momentum, is contained in the modern theory of fields. Unfortunately, the concept of spin is
smothered in the standard electrodynamics as will be shown below.

Realy, the electrodynamics starts from the canonical Lagrangian [2 (4-111)], L=-F F*'/4.

Then, by the Lagrange formalism, the canonical energy-momentum tensor [2 (4-113)]
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A Al [ M - _ A pou Ap aof
TH=0 A‘*—a(apAq) g L=—0"AF" +g"F, F/4 (1.4)

and the canonical total angular momentum tensor [2 (4-147)]



J = oA T My Ay (1.5)
are obtained. Here

oL
Y = 2A0sH e = pAFEHY (1.6)
¢ 9(0,A,)
is the canonical spin tensor [2 (4-150)]. Its space component is Ex A :
Y=ExA, (1.7)

C
The sense of a spin tensor Y™ is as follows. The component Y"° is a volume density of spin. This
means that dS” = Y"°dV is the spin of electromagnetic field inside the spatial element dV . The component
Y™ is a flux density of spin flowing in the direction of the x* axis. For example,
dS,/dt=dS" /dt =dt® = Y™da, is the z-component of spin flux passing through the surface element
da, per unit time, i.e. the torque acting on the element.

The sense of a total angular momentum tensor, J™, is that the total angular momentum in an element
dv, is dd™ = J*vdv, = 2xPT*MdV, + Y*¥dV, . The corresponding integral is

JH = g =L 2xUT VAV, + LY“‘VdVV . (1.8)

It consists of two terms: the first term involves a moment of momentum and represents an orbital angular
momentum; the second term is spin. It must be emphasized that a moment of momentum cannot represent
spin. This idea is discussed in the paper [3], which was written in response to [4]

However, the canonical tensors (1.4), (1.5), (1.6) are not electrodynamics tensors. They obviously
contradict experiments. For example, consider a uniform electric field:

A, =-Ex, A =0, 0,A“=0, F,=-F* =0 A =-E. (1.9)
The canonical energy density (1.4) is negative:
TC°°=g°°FX0FX°/2=—E2/2. (1.10)
Another example: consider a circularly polarized plane wave (or a central part of a corresponding light
beam),
E* =cos(z—-t), E? =—sin(z-t), B* =sin(z-t), BY =cos(z—t), A* =sin(z-t), AY =cos(z-t) (1.11)
(for short we set k = w =1). A calculation of components of the canonical spin tensor (1.6) yields
Y =1, Y =1, Y®¥=A"B, =sin?(z-t), Y™ = A’B, =cos?(z—t). (1.12)

C

This result is absurd because, though Y*° and Y** are adequate, the result means that there are spin fluxes
C C

in y & x- directions, i.e. in the directions, which are transverse to the direction of the wave propagation.

An opinion exists that a change of the Lagrangian can help to obtain the Maxwell tensor (1.1). A.
Barut [5] presented a series of Lagrangians and field equations in Table 1

Table |
Lagrangians and Equations of Motion for the Most Common Fields

Field Lagrangian ‘ Field Equations

Free Electromagnetic Field Li = — Fufer = §(E2 — BY) P, =0
Lip = — $FapFi — $(A%,)° [FA«=0
Lir = — A% JAu” , (A =
Liv = $[AF#r y — Ay WFi7] 4 LF0Fy, | [(J*As =0
Electromagnetic Field | . . | N
with an External Current =S = eam ol




However, A. Barut did not show energy-momentum and spin tensors corresponding to these
Lagrangians. So, we add Table 2

Table 2
Electrodynamics’ Lagrangians, Energy-Momentum Tensors, and Spin Tensors
Lagrangian Energy-momentum tensor Spin tensor
LI :L:_vaFuV/4 leu =T kp:_Av,Xva+gkuFostvl4 YIMLV :YMW:_ZA[XFH]V
Ly =—F F"™ /4= (A")? 12 | Tt =TH — A A% + g™ (A%6)* 12 | Y™ = Y* +2A g A%,
Ly =—A"A"Y/2 T =—A A + g™ A AP Yo =2A A
L, =-F,F"/4-A)° T =T +g™A j° YO = Y

It is clear, none of these energy-momentum tensors is the Maxwell tensor. And what is more, none of
these tensors differs from the Maxwell tensor by a divergence of an antisymmetric quantity. In other words,
none of these tensors has true divergence (1.2). A method is unknown to get a tensor with the true
divergence in the frame of the standard Lagrange formalism. A desire for such a tensor led Professor Soper
to a mistake [6]. He used Lagrangian L, , but, instead of the tensor T,*, he arrived at a false tensor [6,

(8.3.5) — (8.3.9)]

TH=TM+ AT, (1.13)
which differs from the Maxwell tensor by a divergence of an antisymmetric quantity:
T -TH*=0 A'F“-A"j*=0_(A"F"). (1.14)
f o o
In the frame of the standard procedure, a specific terms,
tf**: -0,Y™ /2 (1.15)
and
m*= -9 (x*y*), (1.16)

st
def

are added to the canonical tensors (1.4) and (1.5) [7, 8] (here Y™V = Y *—Y ¥4+ Y "= _2 A F*). This

procedure gives a standard energy-momentum tensor T ™ and a standard total angular momentum tensor
st

J Mw1
st
TH=T Wit e 0" A + g F, F 1440, (AF™), (1.17)
IS g i I g (X AMTE ), (1.18)
st c st C

Unfortunately, the energy-momentum tensor Tt M (1.17) is obviously invalid, as well as the canonical
S|

energy-momentum tensor (1.4). So, the (Belinfante-Rosenfeld) procedure [7, 8] is unsuccessful, and the
tensors (1.17), (1.18) are never used. But the worst thing is found out when calculating of the standard spin

tensor Y V=Y "+ s™" where the spin addend is
st st

c

sHv= A xlh = g (xPy ) g xPo Y = gl e — o8It AT = 25Tt AMIE R — _p Al A

st st st

=2A0FHY = _y (1.19)

C
So, we see the procedure gives a standard spin tensor which equals zero! I.e. the procedure eliminates
classical spin at all:

Y M= Y MY M=, (1.20)

st c st

That is why a spin term is absent in Eq. (1.22).
Note that the addends t ** & s™, though they are unsuitable, satisfy an important equation
st

st



0, s =1t (1.21)
st

st

In spite of the fact that the standard spin tensor is zero, physicists understand they cannot shut eyes
on existence of the classical electrodynamics’ spin. And they proclaim spin is in the moment of the
momentum (1.3). l.e., the moment of momentum represents the total angular momentum: orbital angular
momentum plus spin. l.e., equation (1.3) encompasses both the spin and orbital angular momentum density
of a light beam [2, 4, 9 - 12]:

Ji =V 480 =L 2xIT 0y =L rx(ExB)dV . (1.22)

In the end, it is important to point out that an addition of any term to an energy-momentum tensor,

including the addition of a divergence-free term like — 0, Y /2 (see, e.g. [12, (3.36)]), changes the

energy-momentum distribution and changes the total 4-momentum of the system when the field does not
change. Really, it is easy to express the energy-momentum tensor of an uniform ball of radius R in the form

of 6, W™,
PO = o0 —ex' /3 (r<R), Y =—¥" =¢R*'/3r* (r>R) (1.23)
give
T®=09" =¢ (r<R), T®=0,%Y" =0 (r>R). (1.24)

2. Electrodynamics’ spin tensor exists

Contrary to the Belinfante-Rosenfeld procedure, which eliminates spin, we modify the invalid canonical
tensors (1.4) — (1.6) by another way [13 - 19]. In contrast to the procedure [7, 8], we use other addends to the
canonical energy-momentum and spin tensors. Our addends are

t" =0 A'FY, (2.1)
s =2A oM AT, (2.2)
instead of (1.15), (1.19). t™* gives the Maxwell tensor (1.1)
T™ ='Ic' Mo, AMFYY, (2.3)
and s™" is obtained from the equation
o,sM =t (2.4)
which is analogous to (1.21). As a result, we arrive at a quantity
2AVOMAM =Y M 2 AT MAY, (2.5)
instead of the zero, and, at long last, at our spin tensor:
YAy = A[ka\‘f\ AM _,_H[?»a\v\nu]' (2.6)

Here A* and IT"* are magnetic and electric vector potentials which satisfy 6, A* =9,11" =0,
20y, Ay =F0 20,11, =—¢
free electromagnetic field. It is evident that the conservation law, 0, Y™ =0, is held for a free field.

F* where F** =—F™ F =F“g,,g,, isthe field strength tensor of a

uvap

In other words, we introduce a spin tensor Y into the modern electrodynamics, i.e. we complete
the electrodynamics by introducing the spin tensor, i.e. we claim the total angular momentum consists of the
moment of momentum (1.3) and a spin term, equation (1.22) is wrong, the moment of momentum (1.3) does
not contain spin at all and, in reality,

Ji =4 gi :L (2xIT 10 4 Yi%) gy :L rx (ExB)dV +L Yioqy 2.7)
The difference between our statement (2.7) and the common equation (1.22) is verifiable. The
cardinal question is, what angular momentum flux, i.e. torque t=dJ /dt, does a circularly polarized light
beam of power P without an azimuth phase structure carry? The common answer, according to (1.22), is
t=dJ/dt =P/ow; (2.8)
our answer, according to (2.7), is
t=d)/dt=2P/w. (2.9)



Statements (2.8) & (2.9) are also valid in the case of plane waves or a beam which is much larger
than the particle under action if P is the power absorbed by the particle.

3. Theoretical confirmation of (2.9)

3.1. Consider a wide circularly polarized light beam, which is absorbed by a black plane. According
to the standard electrodynamics, i.e. to (1.22), tangential forces, which provide angular momentum acting on
the plane, act only in the region of the beam surface [1, 6, 9]. However, it is obviously that a couple acts on
any small area of the central alight zone of the plane because the plane absorbs a spin flux density. So,
according to the conservation law, the edge of any small area must experience compensative tangential
forces from the rest of the surface. These tangential stress in the central alight zone is beyond the standard
electrodynamics. Only spin tensor (2.6) provides this stress [19].

3.2. To verify statements (2.8), (2.9), we use the angular momentum conservation law. We have
calculated the torque acting on a dielectric absorbing the circularly polarized light beam. We use the
standard formula

= [[rx(P-V)E+rx(jxB)+PxEJdV | (3.1)
[see, for example, [10] egns. (5.1) & (7.18)]. Here P = (¢ —1)E is the polarization, j=0,P is the
displacement current, rx (P -V)E +r x(jx B) is the moment of the total Lorentz force per unit volume, and
P x E is the torque on electric dipoles per unit volume [20]. The point is the accurate calculation gives the
torque (2.9), T = 2P/, [16]. At that, we have had for the first two terms and for the last term
| [Irx(P-V)E+rx(jxB)IdV | =| [PxEdV | =P/o. (3.2)
Loudon [10] calculated the torque exerted by a light beam on a dielectric as well. He used formula
(3.1) as well, and he obtained
| [Irx(P-V)E+rx(jxB)dV | =P/ (3.3)
[see his formulae (7.19) — (7.24)]. But he omitted P x E term without explanations, and P/® was his finish
result for the torque. Taking into account the P x E term, he must obtain our result 2P/w (2.9), (3.1).
It is important to note [19] that the central part of

the beam produces a torque at the central region of the 54 OPTICS LETTERS / Vol 22, No. 1/ January 1, 1997
dielectric due to the spin of the beam, ’ G, S
T =) j PxEdV |=P/o, (3.4) g T

and the wall of the beam produces an additional torque 0 msec
due to the orbital angular momentum of the beam.
Tom = [[Fx (P-V)E+rx(jxB)JdV | =P/w. (3.5)

40 msoc

4. Experimental confirmation
4.1. The work of Simpson at al. [21] rather confirms
our result (2.7), (2.9) as well. The authors trapped ~2- 80 meos

pm-diameter Teflon particles by a LG'pjl0 beam of A =

1047 nm and power P =25 mW. If the LG beam is

p=0
linearly polarized, it carries an orbital angular momentum
flux of P/w=1.4-10""J. In this case the trapped

particles were rotated with the rotational rate Q =13/sec,  Fig 2. Successive frames of the video image showing the
stop—start behavior of a 2-gm-diameter Teflon particle

120 mses

according to Fig. 2 from [21] (our Fig.1). This implies I it the oiatinal dpania.

that the togrque on theipl)glrtlcles was Fig. 1. It is from [21]
T=8mr’Q=3.3-10""J =0.023P/®» (formula (3) from The particle rotates through 90 degrees
[21], here n =10"°kg/m sec is the viscosity, r =10°m is during 120 msec

the particle radius), and the authors suggested that the
particle absorbed about ~2.3% of the power, i.e. AP =0.023P. However, this conclusion probably needs to



be corrected. The point is a Laguerre-Gaussian beam can exert a torque on particles not only when
absorbing, but also when being converted into Hermite-Gaussian beams.

Allen et al. show that a torque exerts on a converter of a Laguerre-Gaussian beam when converting
(FIG. 1 from [22], our Fig. 2) because the converter change the phase difference between the Hermite-

(a) (b)
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FIG. 1. (a) A suspended A/2 birefringent plate undergoes
torque in transforming right-handed into left-handed circularly
polarized light. (b) Suspended cylindrical lenses undergo torque
in transforming a Laguerre-Gaussian mode of orbital angular
momentum — /7 per photon, into one with -+ /7 per photon.

Fig. 2. Ttis from [22]
A converter undergoes torque in
transforming a Laguerre-Gaussian mode into
Hermite-Gaussian one as well

Gaussian modes that constitute the Laguerre-
Gaussian beam (see Figure 13 from [23]).
Because the particles had an irregular form, and

because ~98% of LG 'p:jo beam passed through

the particles in the experiment, it was inevitably

that a part of the LG ';:10 beam was converted into

HG modes. If this part was at least 1.2%, the
absorption of AP =0.012P only, instead of 2.3%,

could provide the torque t=3.3-107"J.
The main point of the Simpson’s
experiment [21] was a cessation of rotating of the

particles when the linearly polarized LG 'pilo

beam became a circularly polarized one if the
handedness was opposite to the rotation sense.
Thus, we must conclude that the torque
associated with the circular polarization equals
2AP/ o because 1=3.3-10"J=2-0.012P/ w.
In any case, because of the possible LG — HG
conversion, we must conclude that the angular
momentum flux related with the circular
polarization is larger than P/ .

4.2. The recent work [24] confirms rather the formulae (2.7), (2.9) as well. In this work a linearly
polarized LG beam of A = 1064 nm and power of P =20 mW rotates a trapped polystyrene elongated

particle with

Rotation Rate (Hz)
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Fig. 3. Itis Figure 3 from [24]

The rotational rate of the trapped particle as a

function of the degree of circular polarization.

0 corresponds to linear polarization;
4 corresponds to circular polarization.

| Fig.4. It is Figure 2 (b) from [24]

Typical signals from
photo-detectors 1 and 2 for the case
when no particle is trapped and also the
case when the particles are trapped by
the optical tweezers. The rotational rate
of the particle is 3.0 Hz.



the rotational rate Q, =2.5 Hz, and, when circularly polarized, the beam

d@?gé?;r rotates the particle with Q, =3.0 Hz, according to Figures 3 and 2 from
1 [24] (see our Fig 3 and 4). This increase in the angular velocity, AQ =
2 0.5/sec, causes the corresponding increase in the drag torque acting on
Bl E7| . the rotating particle (formula (3) from [24]): _ _
cube /| | &% At =12ma’AQ =1.2-107"°J (here a =10"°m is the particle parameter).
detgdﬂr On the other hand, the increase in the drag torque is provided with

WA —— change in the degree of circular polarization o of the beam as the beam
plals passes through the particle. This change is determined by signals of

photo-detectors 1 and 2 (see the fragment of Figure 1 from [24] in our
Fig. 5. It is a fragment of Fig. 5.).

Figure 1 from [24] The point is an elliptically polarized beam consists of right and left
Th; lsﬁt‘?‘n&ecords Ih‘? “%iht circularly polarized constituents. The electrical field may have the form
MG GIOnarY polinze E — exp(ikz —iot)[a(x+iy) + B =i E, /N2, (4.1)

constituents of the beam
where aE,/~/2 and BE, /+/2 are the amplitudes of the circularly

polarized constituents. The degree of circular polarization of the beam is defined as
2

2
o=% P (4.2)
o’ +p
To determine a and (3, the authors send the beam to a circular polarization detection system consisting of
the /4 plate, the polarizing beam splitter cube, and the photo-detectors. The A /4 plate converts a
circularly polarized constituent to a linearly polarized constituent by introducing /2 phase shift of y-
components, i.e. by multiplying the y-components in (4.1) by i.
E = exp(ikz —iot)[o(x +1y) + B(X —1y)] E, /N2 > E= exp(ikz —iot)[a(X-y) + B(X+Y)]E, /2. (4.3)
According to Fig. 4, the input polarization is 1,
and the output polarization is 0.9982 — 0.0012 = 0.997.
l.e. Ac =0.003. These results mean that
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(a) & signal from a photo-detector from which the = 25
rotation rate of the particle, 94 Hz, was found. lIl [ @I F\i
(b} Signals from the circular polanzation detection AN
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system EIG. | {color onling). A birefringent particle trapped in the
- 19 _ first ring of a HOBE rotates simultanscusly (i) arcund its own

AcP/®w=0.3-10""J (here P=20 mW and axis (due to SAM) and (ii) around the beam’s axis (due to

o=2mc/h=19-10% /sec). So, we have, according to DAM) The frames were taken from a video at the time

[24], At = 4AcP/® instead of At =2AcP/w, ndicated in Eaf:h bos. _

according to eqn. (2.9), and instead of At = AcP/ o, Fig 7. Itis from [25]

according to eqn. (2.8). This sizeable polarization sAN means spin mlg}ﬂaf momenturm, bl}t WE

contribution to the total torque confirms our statement contend that the rotation around own asis is

(2.9). caused by spin and angular momentum of the

circular polanzation.



4.3. In the work [11], a pure Gaussian circularly polarized beam (A =1064nm) rotates a trapped

birefringent particle with QQ =94 -2 =590/sec when the output polarization of the beam is
6=09-0.1=0.8,i.e. Ac=0.2.FIG. 2 from [11] (our Fig.6) shows this, but the radius of the particle and
the power of the beam are not given in the paper. However, as one can understand from the text and from
FIG. 3 of [11], the radius was r =1.2um and the power was P = 100 mW. From this assumption we get

AcP/w=1.1-10"Jand 1 =8mr’Q =2.6-10""J. So, t = 2.4AcP/®, which is rather in accordance with
(2.9).

4.4. We are interested in works that show how a trapped particle rotates simultaneously around its own
axis and around the beam’s axis (due to orbital angular momentum). So we consider the paper [25]. As is
shown in FIG. 1 of the paper (our Fig. 7), a particle of a radius approx r =1 um rotates around its own axis

with rotational rate Q_,,, =18/sec and around the beam’s axis with rotational rate Q ., =2.4/sec along a
circle of radius R =2.9 um. The beam is a circularly polarised high-order J, Bessel beam (HOBB) of
| = 2. The azimuthal component of the linear momentum density, p, = olu? /R (formula (2) of [25]),
yields the azimuthal force on the particle of F, = olu’nr® /R (we set g, = ¢ =1). But, according to the
Stokes’s law, F, =6mnrv. So we have wlu’nr?/R =6mnrv and
VIR=Q,,; =olu’r/6nR>. (4.4)

At the same time, z -component of the Poynting vector is ®w”u®. So, the power impinging on the

T 8mnr’Q

/o  ou’nr?

own

we can obtain

particle is P = w?u®nr?. If we use formula (3) from [21], t = 8mnr’Q

own ?

By the use of (4.4) we arrive at
T Al r’
P/lo  3Q,,,R’

orbit

=23 (4.5)

that confirms our formula t = 2P/w.

4.5. Authors of the interesting work [26] also deal with probe particles, which rotates around their
own axises and around the beam’s axis. Unfortunately, this work is not quantitative one. Nevertheless, this
work confirms an extremely sizeable contribution from the circular polarization of a beam. The authors
watched a rotation of a calcite fragment around its own axis due to ¢ and could not observe this fragment

orbiting though they used a Laguerre-Gaussian beam of | =8 (LG ';80) :

5. Supplement
The theoretical confirmation 3.1 may
be simplified. Consider a very simple one-
F
]

dimensional example. Let a rod experience a
distributed torque because of applying a set of
couples t (Fig. 8). It is evident that any piece
of the rod experiences forces F = At/ Ax 1
acting on ends of the piece. So a constant

shear stress is in the rod as well as the constant

stress is in the central alight zone [19] T Fig. 8.

The rod experience a distributed torque because of applying a set
of couples T. It is evident that any piece of the rod experiences
forces & =At/Ax acting on ends of the piece. So a constant

shear stress is in the rod

6. Conclusions and Acknowledgements

This paper conveys new physics. We
review existing works concerning
electrodynamics spin and indicate that existing
theory is insufficient to solve spin problems because spin tensor of the modern electrodynamics is zero. Then
we show how to resolve the difficulty by introducing a true electrodynamics spin tensor. Our spin tensor
doubles a predicted angular momentum of a circularly polarized light beam without an azimuth phase



structure. The tensor is needed, in particular, for understanding of a rotating dipole radiation [18] and of
mechanical action of a circularly polarized beam [19].

I am deeply grateful to Professor Robert H. Romer for valiant publishing of my question [27] (was
submitted on Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups:
sci.physics.electromag).
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