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QUESTIONS AND ANSWERS
Response to Question #79. Does a plane wave carry sp
angular momentum?

In a recent contribution to this journal, R. I. Khrapko1

asks, ‘‘Does plane wave not carry a spin?’’ The quest
arises because although a circularly polarized light be
might be expected to possess a spin angular momentum\
per photon, were it to do so it would appear to contradict
classical argument that an infinite plane wave carries no
gular momentum.2 The classical argument is that an angu
momentum in the direction of propagation can only be p
duced by a linear momentum in the azimuthal direction
transverse or azimuthal momentum requires an electric
magnetic field in the propagation direction. This requirem
is clearly incompatible with a plane wave that has only tra
verse electric and magnetic fields.

In the laboratory even very large, uniform amplitude,
ameter beams are effectively apertured by the object w
which they interact. Any form of aperture introduces an
tensity gradient and a detailed analysis using Maxwe
equations shows that a field component is induced in
propagation direction and so the dilemma is potentially
solved.

Khrapko1 proposes a specific experiment with a tw
element absorber comprising an inner disc and a closely
ting outer annulus. His concern is that because there is
intensity gradient between the inner disc and outer annu
the inner disc experiences no torque. It would follow fro
the absence of such a torque that the circularly polari
plane wave carries no spin angular momentum.

Our recent review article3 cited by Khrapko, considers
both the spin and orbital angular momentum of light beam
The separation of the angular momentum into spin and
bital contributions, where spin is associated with circular p
larization and the orbital contribution is associated with
azimuthal phase structure, is normal in both classical
quantum physics. In his question, Khrapko is concerned w
the angular momentum arising from circular polarizatio
that is, the spin term. In our review, we give a derivation
an expression showing how the local spin angular mom
tum density per photon is proportional to the radial intens
gradient of a light beam:

j z52
r

2

1

uuu2
]uuu2

]r
\s, ~1!

wheres50 for linearly polarized light ands561 for right-
and left-handed circularly polarized light respectively,uuu2 is
the beam intensity, andr is the distance from the axis. For
plane wave there is no gradient and the spin density is z
In a more recent paper4 we investigated the paradoxes ass
ciated with relationship~1! in considerable detail, particu
larly for laboratory realizable fields possessing gradien
rather than the idealized plane wave. Our approach ech
that of Simmonds and Gutmann5 and may be applied to
problems of the type raised by Khrapko.1

Consider first the simpler problem of a circularly polariz
‘‘infinite plane wave’’ interacting with a suspended absorb
567 Am. J. Phys.70 ~6!, June 2002 http://ojps.aip.org/a
n
m
f
e
n-
r
-
a
or
t
-

th
-
s
e
-

t-
no
s,

d

s.
r-
-
n
d
h
,
f
n-
y

o.
-

s,
es

r

of circular cross section. It is useful to represent the pla
wave as the sum of two beams. The first beam has the s
diameter as the plate; the rapid falloff in intensity at its ed
gives rise to an angular momentum about the axis. The
sorption of the beam and its associated angular momen
results in a torque on the plate. The second beam co
sponds to the rest of the plane wave and has an equa
opposite transverse momentum content around its in
edge. However, this second beam plays no role as it does
overlap with the plate, is not absorbed, and its polarizat
remains unchanged. The circumference of the plate sc
linearly with its radius and the resulting torque therefo
scales with the square of the radius and is, as expected,
portional to the intersected area of the beam. Note that if
absorbing plate is replaced by a transparent quarter w
plate, essentially the same argument can be applied. In
case, although there is no absorption, the polarization sta
the inner beam is transformed to a linear polarization and
the light’s angular momentum is transferred to the plate.

Now consider the specific problem raised by Khrapk
namely that of a two-element absorbing plate comprising
inner disc and a close fitting outer annulus. The plane w
must be decomposed into three beams; an inner disc, a
termediate annulus, and the remainder. The inner beam
on the inner disc of the plate as before, producing a tor
proportional to its area. The annular beam acts on the ann
section of the plate. Because the intensity gradient is of
posite sign at the inner and outer edges, the resulting torq
also have opposite sign. However, the outer edge is lon
and acts about a larger radius vector giving a net tor
proportional to the area of the annulus and in the same
rection as that on the inner disc~see Fig. 1!. The third beam
again plays no role as it does not interact with the plate.
note that at the join between the disc and annulus, the
beams have equal and opposite azimuthal momenta, givi
total azimuthal momentum of zero, as expected for a pl
wave.

Fig. 1. When suspended in a circularly polarized plane wave, a two elem
absorbing plate comprising a central disc and outer annulus experien
torque on both components. The torques arise from the effective apertu
of the light beam, such that the large intensity gradient at the perimete
the plates results in azimuthal components to the momentum density.
567jp/ © 2002 American Association of Physics Teachers
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This argument may, in principle, be extended to any
perimental configuration. Consequently, when interact
with an object or objects of finite extent, a circularly pola
ized light beam of any extent or intensity distribution c
always be considered to be carrying a spin angular mom
tum of 6\ per photon, as demonstrated by Beth in 19366
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Answer to Question #79. Does plane wave not carry a
spin?

This question about the angular momentum~spin! of the
electromagnetic wave1 is an interesting one because of
fundamental nature, yet it is scarcely discussed in typ
textbooks.

Feynman2 shows the existence of angular momentum in
plane wave by showing that there is angular momentum
sorbed when a plane wave moves through a dielectric
dium. He utilizes a simplified model that assumes the v
cous motion of the electrons. A weak point of his explanat
is that the viscosity is assumed implicitly and the phase
needed for the absorption is introduced without justificati
The phase lag really does exist, but it appears entirely du
losses. In a lossless system there is no phase lag an
absorption of either energy or angular momentum.

First, we show that angular momentum is carried by
infinite uniform circularly polarized plane wave and is i
duced in a lossless system of free electrons even with
steady-state absorption, i.e., without being transferred fur
from the electrons to a macroscopic body. The electric
magnetic fields of a uniform circularly polarized monochr
matic plane wave can be represented asE5E0 exp(2 ivt)
3( x̂1 i ŷ) and H5H0 exp(2 ivt)(2 i x̂1 ŷ), where H0

5E0 /h and h5Am/e. The motion of a free electron i
governed by Newton’s equation,m d2r /dt25F, wherer is
the radius vector of the electron andF5e(E1dr /dtÃmH)
is the Lorentz force~a small force due to radiation dampin
is neglected!. Let us try the functionr (t)5A exp(2 ivt)( x̂
1 i ŷ)1v0t ẑ describing electron motion along a helix as
possible solution to this equation. If we substituter (t) and
the expressions forE and H into the equation of motion
we obtain2mv2A exp(2 ivt)( x̂1 i ŷ)5eE0 exp(2 ivt)(1
2v0 /c)( x̂1 i ŷ). We can see thatr (t) is, indeed, a solution if
A52eE0(12v0 /c)/mv2.
568 Am. J. Phys., Vol. 70, No. 6, June 2002
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Thus, an electron in the field of a circularly polarize
plane wave moves along a helix, that is, it acquires the
gular momentum induced by the wave~the angular momen-
tum is induced when the wave is just turned on!. In this
example, the electron is strongly coupled to the wave a
does not interact with any other system. As a result,r is
parallel toE ~A is real!, and there is no absorption of angul
momentum of the steady-state wave. However, when
electrons are coupled to a medium, this motion will lead
absorption of the angular momentum. Notice that an elect
acted upon by the fields of a linearly polarized plane wa
does not execute circular motion; in the above relations,
complex vectorsx̂1 i ŷ and2 i x̂1 ŷ are replaced byx̂ andŷ,
respectively.

Now that the existence of the angular momentum
clearly seen, the question arises of how one can represe
in terms of the vectors of the electromagnetic field. A rigo
ous answer is provided by quantum mechanics so that
question is a matter of an adequate quasiclassical approx
tion. A useful discussion of the angular momentum usin
quasiclassical approximation is given by Simmons a
Guttmann.3 Here we give the classical argument.

The conventional definition of the total angular mome
tum of the wave beam is4 J5c22*Vdv rÃ^EÃH&, where^ &
is the time average. It implicitly assigns the nonzero dens
of angular momentum only to the border of the beam~this is
the only domain where the electric and magnetic fields, d
to their decay, have nonvanishing axial components so
the Poynting vectorP5^EÃH& acquires an azimutha
component,3 providing nonzero axial component for th
cross-productrÃP!. Such an assignment is counterintuitiv
and raises a series of puzzles as outlined in Ref. 1. Ne
theless, it is consistent from the macroscopic point of vie
which does not specify the density distribution. As shown
Ref. 3, this assignment gives a consistent interpretation w
considering the absorption of the angular momentum b
small body inside the beam. Indeed, after the absorption,
central part of the beam is absent and the inner border of
beam carries an angular momentum of the opposite sign
counting for the absorption.

There is, however, a second definition ofJ which assigns
the density of the angular momentum to the inner points
the beam. It is derived3 by performing an integration by part
over the beam radius which moves the nonzero values of
density ofJ from the border to the bulk of the beam. Writte
in complex variables for a monochromatic wave, the n
form of J is J5*Vdv m, where m is the density of the
angular momentum defined asm5Re$e(E*ÃE)/2iv%. One
can easily check thatm is locally nonzero even for the infi
nite uniform plane wave if the latter is circularly polarize
while it is zero for the linearly polarized wave.

This second definition of the density of angular mome
tum is correct in all aspects although, formally, the soluti
is not unique because any other equivalent presentation
the integralJ is also acceptable~for example, the one ob
tained by yet another integration by parts!. In view of such
an ambiguity, is there any criterion for choosing a uniq
definition, and why is this second definition claimed to
correct?

The criterion is the requirement of proper relations b
tween the densities of energy and momenta at each poin
illustrate, consider Maxwell’s equations for the amplitud
of plane waves,k̂ÃH052ceE0 and k̂ÃE05cmH0 . By
568Questions and Answers
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cross multiplying them byE0* and H0* , respectively, we
obtain the equationsE0*ÃH05c(eE0* "E0) k̂ and e(E0*ÃE0)
52c(eE0* "hH0) k̂. The first equation provides the prop
relation between power flux and the energy density. The s
ond provides the relation between angular momentum
the energy density which is proportional toeE0* "hH0 . These
relationships are then easily cast into the quantum mech
cal form using the concept of photons.

Thus, an alternative representation for the total angu
momentum of the electromagnetic wave with the density
angular momentumm defined by the second definition re
solves all the puzzles concerning the spatial localization
this quantity and secures the correspondence between
quantum and classical formulations.

1R. I. Khrapko, ‘‘Question #79. Does plane wave not carry a spin?’’ Am
Phys.69 ~4!, 405 ~2001!.

2R. P. Feynmann, R. B. Leighton, and M. Sands,The Feynman Lectures on
Physics~Addison–Wesley, Reading, MA, 1965!, Vol. 3, Chap. 17, p. 10.

3J. W. Simmons and M. J. Guttmann,States, Waves and Photons: A Mode
Introduction to Light~Addison–Wesley, Reading, MA, 1970!.

4J. D. Jackson,Classical Electrodynamics~Wiley, New York, 1999!, pp.
350 and 608.
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The angular part of the Schrödinger equation for the
hydrogen atom

In all of the most popular quantum textbooks, the ser
solution to the harmonic oscillator is shown to break beca
of the requirements of normalization which lead to the e
ergy eigenvalues. Why do none of these textbooks disc
the necessity for the breaking of the series for the ang
part of the Schro¨dinger equation for the hydrogen atom?
fact, it appears that the series does not have to break fo
eigenvalues,m.1.
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