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Abstract

Angular momentum is emitted by a rotating electric dipole mainly into the equatorial

part of space situated near the plane of the rotation where polarization of the radiation

is elliptic or linear. Polar regions situated near the axis of rotating are scanty by the

angular momentum, although they are intensively illuminated by the almost circularly

polarized radiation. A conclusion is made that the angular momentum is orbital angular

momentum and, except the angular momentum, the dipole emits spin mainly along the

axis. So, it is emphasized that the Maxwell electrodynamics is not complete. To calculate

the spin a spin tensor is introduced into the electrodynamics.

PACS number: 03.05.De

Keywords: classical spin; Belinfante’s procedure; torque

1 Introduction and conclusions

As is well known, [1, Sect. 2.8], [2, Sect. 67], [3, Sect. 141], [4, Sect. 9.2] a linear electric dipole
oscillator p radiates time-average electromagnetic energy E and power

P = dE/dt = ω4p2/12π. (1)

A circular oscillator, i.e. rotator, radiates time-average electromagnetic energy and power

P = dE/dt = ω4p2/6π, (2)

and emits angular momentum L and torque

τ = dL/dt = ω3p2/6π. (3)

In this case, the radiation is elliptically polarized. The ratio of lengths of the half-axes is equal
to [2, Problem 1 of Sect. 67]

cos θ. (4)

In particular, if a xy-plane is the plane of rotating, the z-directed (θ = 0) radiation is circularly
polarized, and the radiation in the equatorial plane (θ = π/2) is linearly polarized.

We use the Heaviside’s system of units, but we put the speed of light, c = 1, and ǫ0 = 1.
(Note that Corney [1, p. 40] made a mistake. He wrote that the power radiated by an oscillator
is (1) in both cases, (1) and (2). But, Fig.2.6 is correct. See also [5].)

One can see that the ratio L/E = 1/ω in the case of a rotator is the same as the ratio S/E ,
i.e. the ratio spin/energy, for a photon. Theorists interpret the fact as follows [1, p. 42].
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Each quantum h̄ω of circularly-polarized light emitted by an oscillating dipole mo-
ment transports a z-component of angular momentum of h̄.

R. Feynman, telling about a spin of photons, clearly shows [6, Sec.17- 4] that when a circularly
polarized wave is absorbed the absorbing medium gets angular momentum and energy in a 1/ω
ratio. So, a circularly polarized wave carries spin angular momentum.

But, there is a puzzle here. The torque (3) is obtained by integrating over the solid angle
dΩ = sin θdθdϕ [1, (2.78)],

dL/dt = iω3
∫

(r̂ · p)(r̂ × p)dΩ/16π2. (2.78)

where the overline means the complex conjugation, and the Cartesian coordinates are in use

r̂ = {sin θ cos ϕ, sin θ sin ϕ, cos θ}, p = {1, i, 0}pe−iωt.

Substituting yields

dLz/dt = ω3p2
∫

sin2 θdΩ/16π2 = ω3p2/6π. (5)

It follows from (5) that the angular momentum is emitted mainly into the equatorial part
of space, situated near the plane of the rotation where, according to (4), the polarization
of the radiation is elliptic or linear. Polar regions, situated near the z-axis, are scanty by the
angular momentum, although they are intensively illuminated by the almost circularly polarized
radiation [2, Problem 1 of Sect. 67]

P = ω4p2
∫

(cos2 θ + 1)dΩ/32π2 = ω4p2/6π. (2)

¿From our viewpoint, this shows that the angular momentum (3) is orbital angular momen-
tum unconnected with spin of electromagnetic field. This angular momentum, possibly, has
no wave nature because the Poynting vector E ×H may be not bound to have a wave nature.
If rotation of a dipole is stationary, the radiated power (2) must be compensated by torque τ
applied to the dipole,

P = τω.

This torque (3) is emitted into the equatorial region.
¿From our viewpoint, the angular momentum (3) does not exhaust the reality. Actually, the

polar regions, illuminated with circularly polarized light, get a certain amount of spin angular
momentum. But, for calculating of this angular momentum, it is necessary to introduce a spin
tensor of electromagnetic waves into the Maxwell electrodynamics.

Electron spins of material of a rotator may be sources of the radiated spin angular momen-
tum. The electron spins are gradually oriented in parallel to z-axis during the radiation. In
other words, a rotating dipole is being magnetized in the transverse direction.

This conclusion was presented in November 2001 in Russian
http://www.mai.ru/projects/mai works/articles/num6/article3/auther.htm

2 Electrodynamics spin

As is well known, the canonical Lagrangian of electrodynamics,

L = −FµνF
µν/4, Fµν = 2∂[µAν],
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according to Noether’s theorem, gives the canonical energy-momentum and spin tensors [7, Sec.
7g]:

T
c

µα = ∂µAσ

∂L
∂(∂αAσ)

− gµαL = −∂µAσF ασ + gµαFσρF
σρ/4, (6)

Υ
c

µνα = −2A[µδν]
σ

∂L
∂(∂αAσ)

= −2A[µF ν]α. (7)

But the canonical energy-momentum tensor is asymmetric and has an incorrect divergence,

∂α T
c

µα = −∂µAνj
ν .

The divergence of a true energy-momentum tensor must be equal to −Fµνj
ν .

To symmetrize the canonical energy-momentum tensor and to turn it to the Maxwell-
Minkowski tensor,

T α
µ = −FµνF

αν + δα
µFσνF

σν/4, (8)

theorists has to add a term
∂βAµF

αβ (9)

to the canonical energy-momentum tensor (6). This term divides in two parts:

T α
µ = T

c

α
µ + ∂βAµF

αβ = T
c

α
µ + ∂β(AµF αβ) + Aµj

α.

The second part,
Aµj

α, (10)

repairs the divergence of the canonical tensor, and the first part,

∂β(AµF
αβ), (11)

symmetrizes the contravariant form of the tensor.
The only reason for adding the term (9) to the canonical tensor (6) is to obtain the Maxwell-

Minkowski tensor (8) which was known beforehand. The term (9) is not even a divergence.
Theorists ignore the second part (10) of the term. They do not see it. But Belinfante and

Rosenfeld [8, 9] made a considerable study of the first part (11). They pointed out that an
antisymmertization of the first part yields the divergence of the canonical spin tensor (7) with
the minus sign,

2∂β(A[µF ν]β) = −∂β Υ
c

µνβ. (12)

We shall use the fact below, but now we have to emphasize that the Belinfante’s part (11) itself
turns the canonical energy-momentum tensor (6) not to the Maxwell-Minkowski tensor (8), but
to a tensor that may be named the Belinfante’s tensor,

T
B

µα = T
c

µα + ∂β(AµF αβ) = T µα − Aµjα.

Nevertheless, theorists believe that they obtain the Maxwell-Minkowski tensor (8) by adding
the Belinfante’s divergence (11) to the canonical tensor (6). Moreover, on the grounds of (12),
theorists add (−Υ

c

µνβ) to the canonical spin tensor (7) and arrive to a zero as the electro-

dynamics’ spin tensor. So, the Belinfante’s divergence (11) does not lead to the Maxwell-
Minkowski tensor (8), but the Belinfante’s procedure eliminates spin tensor. That is why
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classical spin is absent in the Maxwell electrodynamics. The classical spin tensor is considered
zero. That is why they consider a circularly polarized plane wave has no angular momentum
[10, 4, 11, 12, 13, 14, 15, 16, 17].

Here a problem arises: what is an electrodynamics’ true spin tensor. What must we add to
the canonical spin tensor to get the true spin tensor?

Our answer is as follows: a spin addition, ∆ Υ
c

µνα, and the energy-momentum addition (9)

must satisfy an equation of type (12) which uses (9) instead of (11),

2∂βA[µF ν]β = ∂β∆ Υ
c

µνβ. (13)

A simple expression satisfies the Eq. (13),

∆ Υ
c

µνα = 2A[µ∂ν]Aα.

So, we obtain [18, 19, 20, 21, 22]

Υµνα = Υ
c

µνα + ∆ Υ
c

µνα = 2A[µ∂|α|Aν]. (14)

This result was submitted to “JETP Letters” on May 14, 1998.
The spin tensor (14) is a function of the vector potential Aµ and is not gauge invariant. We

greet this fact [20]. As is shown, Aµ must satisfy the Lorentz condition, ∂µA
µ = 0.

The expression (14) is not final. As a matter of fact, the electrodynamics is asymmetric.
Magnetic induction is closed, but magnetic field strength has electric current as a source:

∂[αFβγ] = 0, ∂νF
µν = jµ.

So, a magnetic vector potential exists, but, generally speaking, an electric vector potential does
not exist. However, when currents are absent the symmetry is restored, and a possibility to
introduce an electric multivector potential Πµνσ appears. The electric multivector potential
satisfies the equation

∂σΠµνσ = F µν .

A covariant vector, dual relative to the multivector potential,

Πα = ǫαµνσΠµνσ,

is an analog of the magnetic vector potential Aα. We name it the electric vector potential.
Using vector notations, it can be introduced as follows.

If divD = 0, then D = curlΠ. If also curlH = ∂D/∂t, then H = ∂Π/∂t.
This procedure is similar to an introduction of the magnetic vector potential:

If divB = 0, then B = curlA. If also curlE = - ∂B/∂t, then E = −∂A/∂t.
Scalar potentials may participate in both cases still, but we may consider they are zero.
The symmetry of the electrodynamics forces us to offer a symmetric expression for the spin

tensor consisting of two parts, electric and magnetic [18, 19].

Υµνα == Υ
e

µνα + Υ
m

µνα = A[µ∂|α|Aν] + Π[µ∂|α|Πν]. (15)

The existence of the spin tensor imply that electromagnetic field acts on its boundary not
only with the Maxwell stress tensor T ji but also with a screw tensor Υjki (they are rather tensor
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densities). The stress tensor provides a force acting on a surface element, and the screw tensor
provides a torque acting on the surface element dai,

dF j = T jidai, dτ jk = Υjkidai.

In Minkowski space we have

dP µ = T µαdVα, dSµν = ΥµναdVα.

So, if a field is bounded locally by an infinitesimal element dVα, the element gets the infinitesimal
four-spin dSµν , and a spacelike infinitesimal volume dV0 contains a momentum and a spin
angular momentum,

dP j = T j0dV0, dSik = Υik0dV0.

3 Radiation of spin

We now use the expression (15) for a calculation of spin current in the electromagnetic field of a
rotator. We start from a calculation of electric and magnetic fields. We use an exact expression
[3, (141.10)], [1, (2.66), (2.67)]

4πDi = 3pkrkr
i/r5 − pi/r3 + 3ṗkrkr

i/r4 − ṗi/r2 + p̈krkr
i/r3 − p̈i/r,

4πBik = 2ṗ[irk]/r
3 + 2p̈[irk]/r

2.

Here we use the spherical coordinates, x1 = r, x2 = θ, x3 = ϕ, with the metric tensor

g11 = 1, g22 = r2, g33 = r2 sin2 θ,
√

g = r2 sin θ.

So, we have (we put p = 1)

r = {r, 0, 0}, p = {sin θ, (cos θ)/r, −i/(r sin θ)}ei(ωt−ϕ).

Using these formulae gives:

D1 = (2/r3 + i2ω/r2) sin θ · eiω(t−r)−iϕ/4π,

D2 = (−1/r4 − iω/r3 + ω2/r2) cos θ · eiω(t−r)−iϕ/4π,

D3 = (i/r4 − ω/r3 − iω2/r2) · eiω(t−r)−iϕ/4π sin θ,

B12 = cos θ · (−iω/r + ω2)eiω(t−r)−iϕ/4π, (16)

B31 = sin θ · (ω/r + iω2)eiω(t−r)−iϕ/4π, B23 = 0. (17)

The lowering of vector indexes of the electric induction gives the electric field strength
Ek = Digik. We suppose that A0 = ϕ = 0. So,

Ak = −
∫

Ekdt = iEk/ω = iDigik/ω, Ak = iDk/ω.

The use of the spherical coordinates forces us to replace the partial derivation ∂αAν in (15)
with covariant derivation

∇αAν = ∂αAν + Γν
µαAµ
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where the connection coefficients are

Γ1

22
= −r, Γ1

33
= −r sin2 θ, Γ2

33
= − sin θ cos θ, Γ3

23
= cos θ/ sin θ, Γ2

12
= Γ3

13
= 1/r.

We consider only two nonzero components of the time-average electric part of the spin
current

< Υ
e

23
1 >= ℜ{iD[2∇1 (iD3 ])}/2ω2 = (−ω3/r4 + 2ω/r6) cos θ/r432π2 sin θ, (18)

< Υ
e

31
1 >= ℜ{iD[3∇1 (iD1 ])}/2ω2 = ω/r532π2. (19)

We must now multiply (18), (19) by g11 to raise the index 1. But, we have to put g11 = −1
because Υijk is a component of the 4-spin tensor Υµνα and we imply signature (+−−−) of the
metric tensor gαβ . So, we obtain

< Υ
e

231 >= (ω3/r4 − 2ω/r6) cos θ/r432π2 sin θ, < Υ
e

311 >= −ω/r532π2.

An angular distribution of the spin current with respect to the z-axis along the radius is
given by the formula,

d3
S
e

z/dt = ẑi < Υ
e

jk1 >
√

gda1

√
gǫijk/2

= ẑ1 < Υ
e

231 >
√

gda1

√
gǫ123 + ẑ2 < Υ

e

311 >
√

gda1

√
gǫ231

= [(ω3 − 2ω/r2) cos2 θ sin θ + (ω/r2) sin3 θ]dθdϕ/32π2. (20)

The formula is a vector product of the spin bivector < Υ
e

jk1 >
√

gda1 which is associated

with the radial oriented element of surface da1 = dθdϕ and the unit vector directed along the
z-axis

ẑi = {ẑ1 = cos θ, ẑ2 = (− sin θ)/r, ẑ3 = 0}.
The main part of the distribution,

ω3 cos2 θdΩ/32π2,

does not depend on the radius and has a maximum in the polar area.
Integrating this part gives the electric part of the spin current with respect to the z-axis

which is radiated by our dipole:

dS
e

z/dt =
∫ ∫

ω3 cos2 θ sin θdθdϕ/32π2 = ω3/24π. (21)

The rest of terms in (20),

[(−2ω/r2) cos2 θ sin θ + (ω/r2) sin3 θ]dθdϕ/32π2,

describe an interesting phenomenon. Except the current (21) that is radiated to infinity, a
closed spin current circulates not far from the rotating dipole. The spin current is directed
outside in the equatorial area, but is returned back in the polar area.

∫ ∫
[(−2ω/r2) cos2 θ sin θ + (ω/r2) sin3 θ]dθdϕ/32π2 = 0.

This is a torque field strength of the electromagnetic field.
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Now we consider the magnetic part of the spin tensor

Υ
m

µνα = Π[µ∇|α|Πν].

We obtain Π3 step-by-step,

Π3 =
∫

H3dt = (−i/ω)H3g33 = −ig33H12
√

gǫ123/ω = −ig33
√

gB12g11g22/ω = −iB12/ω
√

g.

Similarly,
Π2 = −iB31/ω

√
g, Π1 = 0.

Using (16), (17) yields

< Υ
m

231 >= ℜ(Π[2∇|1 |Π3 ])/2 = ω3 cos θ/r432π2 sin θ.

And
d3

S
m

z/dt = ẑ1 < Υ
m

231 > gda1 = ω3 cos2 θ sin θdθdϕ/32π2.

Integrating gives the same result as in (21).
The total spin current with respect to the z-axis which is radiated by our dipole is

dSz/dt = τS = dS
e

z/dt + dS
m

z/dt = ω3
∫

cos2 θdΩ/16π2 = ω3/12π. (22)

Compare this value with the orbital angular momentum current, dL/dt, (5) and the power,
P, (2),

dLz/dt = ω3
∫

sin2 θdΩ/16π2 = ω3/6π. (5)

dE/dt = P = ω4
∫

(cos2 θ + 1)dΩ/32π2 = ω4/6π. (2)

One can see that the spin current (22) is half of the orbital angular momentum current
(5), and the ratio of the spin current to the power, (22)/(2), is 1/2ω. But the ratio of the spin
current density to the power density,

ω3 cos2 θ/16π2

ω4(cos2 θ + 1)/32π2
,

is 1/ω, just as for a photon, along the z-axis (θ = 0) because the radiation is circularly polarized
along the direction.

4 Circularly polarized plane wave

The ratio S/E is 1/ω for a circularly polarized plane wave, because, in this case, all energy is
circularly polarized. Indeed, consider a z-directed circularly polarized plane wave

E = x cos ω(z − t) − y sin ω(z − t), H = x sin ω(z − t) + y cos ω(z − t),

A = −
∫

Edt = H/ω, Π =
∫

Hdt = E/ω, ∂zA = E, ∂zΠ = −H,

Υxyz = Υ
e

xyz + Υ
m

xyz = −A[x∂zA
y] − Π[x∂zΠ

y] = 1/ω,
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2E[xHy] = 1.

Υxyz/2E[xHy] = 1/ω.

This paper was submitted to J. Experimental & Theor. Phys. (26 Nov 2001), American J.
of Physics (28 Mar 2002), Foundation of Physics (03 May 2002), Acta Physica Polonica B (09
May 2002), Europhysics Letters (15 Apr 2003).

I am deeply grateful to Professor Robert H. Romer for publishing of [10].
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