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Unambiguous definitions of energy-momentum and spin tensors are cited. Moment of momentum 
and spin are shown to be different concepts, but spin is absent in the modern electrodynamics. 
Nevertheless, moment of momentum and spin of a rotating dipole radiation is calculated, and notice 
is taken of principal mistakes of Jackson and Becker. This means that the equality between moment 
of momentum and canonical spin is false. 
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A strange delusion is widespread that no unambiguous definition of the electrodynamics’ energy-

momentum tensor is possible. The paper “Energy-momentum localization and spin” [1] is ignored. Now 
we call attention to this curious paradox once more. 
 

1. What is the energy-momentum tensor? 
As an example of an unambiguous definition of the energy-momentum tensor we recall J. L. 

Synge’s definitions [2]: “We assign to a material continuum a symmetric energy-momentum tensor. The 
tensor embodies the mechanical properties of the matter, such as stress and density”. And we recall also 
that an electromagnetic field is a material continuum. Synge states the interpretation of the energy-
momentum tensor in terms of flux densities, and he makes the following statement concerning the 
energy-momentum tensor λµT :  

4-momentum  across a 3-target  is .                                   (1.1) λdp µdV µ
λµλ dVTdp =

If the 3-target is an infinitesimal 3-volume at rest relative to an observer’s laboratory, then 
, and  is the infinitesimal 4-momentum of the material continuum 

within the 3-volume, i.e.  is the mass within the 3-volume, and  is the 3-
momentum within the 3-volume, i.e. 

)3,2,1(,0 == jdV j t
t dVTdp λλ =

t
ttt dVTdpdm == t

iti dVTdp =
ttT  and itT  are the mass and momentum density of the continuum, 

respectively. 
If the 3-target is a surface element , then jda dtdadVdV jjt == ,0 , and , i.e.  dtdaTdp j

jλλ =

j
tjt daTdtdp =/  and                                    (1.2) j

ijii daTdtdpF == /
are the mass-energy flux (power) across the surface element  and the force acting on the surface 

element , respectively, i.e. 
jda

jda tjT  is mass-energy flux density in the continuum, and ijT  is stress tensor 

of the continuum. If the material continuum is an electromagnetic field, tjT  is called the Poynting vector, 
and ijT  is called the Maxwell stress tensor. 

At great length [3], “the component ijT of the stress tensor is the i th component of the force on 
unit area perpendicular to the -axis. For instance, the force on unit area perpendicular to the jx x -axis, 

normal to the area (i.e. along the x -axis), is xxT , and the tangential forces on unit area (along the  and 
 axis) are 

y
z yxT  and zxT ”. In other words, xxT  is the pressue on a surface element . xda

The local definition (1.1) of the energy-momentum tensor are valid not only for an 
electromagnetic field. If the material continuum is a solid body, the stress tensor depends on a 
deformation of the body. The deformation is described mathemanically by the strain tensor  [3], and 
the stress tensor is determined by the form 

iju

)3/(2 ijl
l

ijijl
l

ij uuKuT δµδ −+= ,                               (1.3) 
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where K  and µ  are moduluses of compression and shear, respectively [3]. We present this form here to 
emphasize that if the deformation is known, the stress tensor is determined unambiguously, and tension 
sensors can check the stress. 

Analogically, if a pressure of light is measured, or Faraday’s tensions along lines of force and 
pressures at right angles to lines of force are measured, the Maxwell stress tensor ijT  is determined 
unambiguously, according to the local definition (1.1). My radio receiver determines the Poynting vector 

tjT  locally and unambiguously (in a frequency interval). Alan Corney [4] demonstrates the angular 
dependence of the Poynting vector in space around an electric dipole unambiguously (Fig. 1). In the 
Feynman’s Fig. 27-6 [5] (our Fig. 2) the Poynting vector is depicted (unambiguously) in space around an 
electric charge and a magnet (Feynman denotes the Poynting vector by S). 

 
It is important to examine the divergence of an energy-momentum tensor, . Let  be an 

element of a closed surface  which encloses a small volume V  of a solid body. Then this volume acts 
on the rest part of the body by the force  

λµ
µT∂ jda

a

∫∫ ∂==
∂= V

ij
j

Va
j

iji dVTdaTF .                    (1.4) 

Thus, the divergence is the density of external forces acting on the material continuum: 
ij

j
ii TdVdFf ∂== / .                           (1.5) 

Let the material continuum be an electromagnetic field, which interacts with an electric 4-current 
. We know that an electromagnetic field acts on the 4-current by the Lorentz force density 

 where  is the field-strength tensor. Thus, the external 4-force density acting on the 

electromagnetic field is , and 

µj
λµ

µ
λ Fjf L = λµF

λµ
µ

λ Fjf −=
λµ

µ
λµ

µ TFj ∂=− ,                               (1.6) λµ
λ

µ Fj ∂=

where λµT  is the electrodynamics’ energy-momentum tensor. Equation (1.6) is a key to identify this 
tensor λµT  in terms of the electromagnetic field. 

As is known, the Maxwell energy-momentum tensor, 
4/αβ

αβ
λµµν

αν
λαλµ +−= FFgFFgT ,                                       (1.7) 

obeys Equation (1.6). But the Equation admits an addition to the tensor, for example, , or 
. Well! The Equation admits, but experiments admit no addition. Only the Maxwell tensor (1.7) 

gives the true 4-momentum  across a 3-target . Only the Maxwell tensor provides the real 
pressure of light, Faraday’s tensions, or the angular dependence of the energy flux density depicted by 

)( µαλ
α FA∂

µλ jA
λdp µdV
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Corney. The Feynman’s Poynting vector S  (Fig. 2) is a component of the Maxwell tensor. My radio 
receiver determines exactly this component of the Maxwell tensor (the Poynting vector). Thus, 
electrodynamics’ energy-momentum tensor (1.7) is unambiguous. 

 
2. What is the spin tensor? 

Jan Weyssenhoff and A. Raabe [6]: “By spin-fluid we mean a fluid each element of which 
possesses besides energy and linear momentum also a certain amount of angular momentum, proportional 
– just as the energy and the linear momentum – to the volume of the element”. In accordance with this 
sentence and analogically to (1.1) we define the 4-spin tensor µλνλµν ΥΥ −=  by the form: 

4-spin  across a 3-target  is .                                   (2.1) λµds µdV ν
λµνλµ Υ dVds =

According to this definition, spin tensor is unambiguous as well as energy momentum tensor. 
It is important to examine the divergence of a spin tensor, . Let  be an element of a 

closed 3-surface V  which encloses a small 4-volume 

λµν
νΥ∂ νdV

Ω  of a material continuum with spin. Then this 4-
volume supplies with the angular 4-momentum  

∫∫ ∂++=+=
∂= Ω

λµν
ν

µλµλ

Ω
ν

λµννµλλµ ΩΥΥ dfrTdVTrJ
V

)22()2( ][][][                     (2.2) 

the rest part of the 4-continuum. If the external sources are absent, ,  0,0 == µλµ fJ
λµν

ν
λµ Υ∂=][2T .                          (2.3) 

Since the Maxwell tensor (1.7) is symmetric, electrodynamics’ spin tensor, if it exists, is 
divergence-free in a free field as well as electrodynamics’ energy-momentum tensor in a free field. 

 
3. The canonical formalism 

Physicists tried to obtain electrodynamics’ energy-momentum and spin tensors from the canonical 
Lagrangian [7 (4-111)], . By the Lagrange formalism, the canonical energy-momentum 

tensor [7 (4-113)] 

4/µν
µν−= FF

c
L

4/
)(

αβ
αβ

λµµα
α

λλµ

αµ
α

λλµ +−∂=−
∂∂

∂
∂= FFgFAg

A
AT

c c

c L
L

                                (3.1) 

and the canonical total angular momentum tensor [7 (4-147)] 
λµννµλλµν

ccc
TxJ Υ+= ][2                                                                          (3.2) 

are obtained. Here 

νµλ

αν

µ
α

λλµν −=
∂∂

∂
δ−=Υ ][][ 2

)(
2 FA

A
A

c

c
L

,                                                         (3.3) 

is the canonical spin tensor [7 (4-150)]. Its space component is AE× : 
AE×=Υ 0ij

c
.                                                                             (3.4) 

Here the sense of a total angular momentum tensor, , is presented: 
 is the total angular momentum in an element , the 

corresponding integral is 

λµνJ
ν

λµν
ν

νµλ
ν

λµνλµ Υ dVdVTxdVJdJ +== ][2 νdV

∫ ∫+=+=
V V

dVdVTxSLJ ν
λµν

ν
νµλλµλµλµ Υ][2 .                             (3.5) 

It consists of two terms: the first term involves a moment of momentum and represents an orbital angular 
momentum; the second term is spin.  

However, the canonical tensors (3.1), (3.2), (3.3) are not electrodynamics tensors. The canonical 
energy-momentum tensor has a wrong divergence. All these tensors obviously contradict experiments. 
For example, consider a uniform electric field: 

EAFFAAExA x
x

xx −=∂=−==∂=−= α
α 0

0
00 ,0,0, ,                           (3.6) 
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where  is the magnetic vector potential from (3.1). The canonical energy density (3.1) is negative: αA
2/2/ 20

0
0000 EFFgT x

xc
−== .                                        (3.7) 

Another example: consider a circularly polarized plane wave (or a central part of a corresponding light 
beam), 

),cos(),sin(),sin(),cos( tzBtzBtzEtzE yxyx −=−=−−=−= )cos(),sin( tzAtzA yx −=−=        
(3.8) 

(for short we set ). A calculation of components of the canonical spin tensor (6) yields 1=ω=k
1,10 =Υ=Υ xyz

c

xy

c
,   ,   .           (3.9) )(sin 2 tzBA x

xzxy

c
−==Υ )(cos2 tzBA y

yyzx

c
−==Υ

This result is absurd because, though  and  are adequate, the result means that there are spin 

fluxes in - directions, i.e. in the directions, which are transverse to the direction of the wave 
propagation. 

0xy

c
Υ xyz

c
Υ

xy &

An opinion exists that a change of the Lagrangian can help to obtain the Maxwell tensor (1.7) by 
the Lagrange formalism. A. Barut [8] presented a series of Lagrangians and field equations in Table 1. 

 
However, A. Barut did not show energy-momentum and spin tensors corresponding to these 

Lagrangians. So, we add Table 2. 
Table 2 

Electrodynamics’ Lagrangians, Energy-Momentum Tensors, and Spin Tensors 
Lagrangian Energy-momentum tensor Spin tensor 

4/µν
µν−== FFLL

cI  4/, σν
σν

λµµνλ
ν

λµλµ +−== FFgFATT
cI

νµλλµνλµν −=Υ=Υ ][2 FA
cI  

2/)(4/ 2
,µ

µµν
µν −−= AFFLII  2/)( 2

,,
,

σ
σλµ

σ
σλµλµλµ +−= AgAATT III σ

σνµλλµνλµν +Υ=Υ ,
][2 AgAIII

2/,
,

ν
µν

µ−= AALIII  ρσ
ρσ

λµµσλ
σ

λµ +−= ,
,

,, AAgAATIII  νµλλµν =Υ ],[2 AAIII  
σ

σ
µν

µν −−= jAFFLV 4/  σ
σ

λµλµλµ += jAgTT IV  λµνλµν Υ=Υ IV  
It is clear, none of these energy-momentum tensors is the Maxwell tensor. And what is more, none 

of these tensors differs from the Maxwell tensor by a divergence of an antisymmetric quantity. In other 
words, none of these tensors has true divergence (1.6). A method is unknown to get a tensor with the true 
divergence in the frame of the standard Lagrange formalism.  

Nevertheless, physicists have created an illusion that the Maxwell tensor can be derived by so-
called Belinfante-Rosenfeld procedure [9,10]. A specific terms,  

µν
ν

λµνλ
ν

λµν
ν

λµ Υ FAFAt
st

∂+∂=−∂= 2/~                             (3.10) 

and  
)~( ][ νκµλ

κ
λµν Υ−∂= xm

st
,                                                        (3.11) 

are added to the canonical tensors (3.1) and (3.2) (here ).  µνλνλµµνλλµνλµν −=Υ+Υ−Υ=Υ FA
ccc

def
2~
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Unfortunately, this procedure does not give the Maxwell tensor. It gives strange tensors, energy-
momentum  and total angular momentum : λµ

st
T λµν

st
J

)(4/ µνλ
ν

αβ
αβ

λµµν
ν

λλµλµλµ FAFFgFAtTT
stcst

∂++−∂=+= ,                           (3.12) 

)(2 ][ νκµλ
κ

λµνλµνλµνλµν FAxJmJJ
cstcst

∂+=+= .                                         (3.13) 

The energy-momentum tensor  (3.12) is obviously invalid, as well as the canonical energy-

momentum tensor (3.1). So, the procedure [9,10] is unsuccessful, and the tensors (3.12), (3.13) are never 
used. But to make matter worse the procedure eliminates spin tensor at all: 

λµ

st
T

νµλλµνλµν −=Υ ][2
ststst
TxJ 02 ][ =+=+= νµλλµνλµνλµν FAs

cstc
ΥΥ ;                                            (3.14) 

here  
νµλνµλλµνλµν ][][ 22 FAtxms

ststst
=−=                                                   (3.15) 

is the Belinfante-Rosenfeld addend to the canonical spin tensor. As a result the form   

∫= V
dVTxJ ν

νµλλµ ][2 ,                                                         (3.16) 

instead of (3.5), is proclaimed as the total angular momentum, but µνT  in (3.16) is the Maxwell tensor 
(1.7) instead of (3.12). 

 
4. The Humblet transformation 

Unfortunately, the form (3.16) raises the problem of electrodynamics’ spin. In particular, spin of 
the circularly polarized light beam [11, problem 7.28] 

),()]()[exp( 0 yxEi
k

itiikz yx ∂−∂++−=
zyxE ω ,                      (4.1) ci /EB −=

is not seen by the form (3.16). To see the spin, the Humblet transformation of form (3.16) is performed 
[12,13]: 

SLAErBErJ +=×+∇×=××= ∫ ∫∫ dVdVAEdV i
i

000 )()( εεε .                 (4.2) 
This transformation is presented as a decomposition of the moment of momentum J  (3.16) into orbital 
and spin parts. However, the transformation returns us to the discarded formula (3.5). Moreover, the first 
term on the right, which is posed as the orbital part, obviously is zero for a symmetric beam [14]. Thus, 
this transformation claims that the total moment of momentum in such a beam is spin. Ohanian [13] 
writes, “this angular momentum is the spin of the wave”. 

In our opinion, it is illogical to consider the term ∫ × dVAE0ε  of the decomposition as spin in the 
frame of the standard electrodynamics with Maxwell energy-momentum tensor and zero spin tensor 
because  is a component of the canonical spin tensor (3.3) which is eliminated by the Belinfante-
Rosenfeld procedure and so is absent in the theory. Besides there is a serious geometrical objection 
against the identification of the density of moment of momentum, 

AE×0ε

)(0 BEr ××ε , with the density 
. The point is, AE×0ε )( BEr ××  is localized on the surface of the beam [13]. A flow of circulating 

mass-energy flows there. On the contrary, AE×  is distributed over the beam’s body. Therefore a 
conclusion was made that integrating of quantity AE×  is simply a method by which the moment of 
momentum of the circulating flow can be calculated and that the moment of momentum is an orbital 
angular momentum [14], while spin is apart from the expression ∫ ×× dV)(0 BErε . 

Jackson [11] and Becker [15] agree that the term AE×0ε  plays the role of a spin tensor and that 
the Humblet identity  

∫∫ ×=×× dVdV AEBEr )(                                   (4.3) 
identifies moment of momentum with spin. To confirm this identifying, Jackson [11, problem 7.27] and 
Becker [15, V. 2, p. 320] consider an electromagnetic radiation produced by a source localized in a finite 
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region of space. They apply the Humblet transformation with the integration by parts to the radiation and 
obtain the same equality (4.2) 

But they are mistaken! The equalities (4.2), (4.3) are invalid in this case because the integration by 
parts cannot be used when radiating into space. A straight calculation presented in Section 8 for the 
radiation of a rotating dipole gives  

∫∫ ×=×× dVdV AEBEr 2)( .                                  (4.4) 
Somewhat such result must be expected if we attribute the sense of spin density to the integrand 

 because when radiating into space photons are variously directed, and their spins are not parallel to 
each other as in a beam. But, the point is, result (4.4) proves the moment of momentum, ∫ , 

is not spin, ! 

AE×
×× dV)( BEr

∫ × dVAE
Besides, as in the case of the beam, the quantities )( BEr ××  and  are spatially separated in 

the case of the dipole radiation: moment of momentum, 
AE×

)(0 BEr ××ε , is radiated mainly near the plane of 
rotating of the dipole, while spin, , exists near the rotating axis, where the radiation is circularly 
or elliptically polarized [16]. 

AE×0ε

There is one more important circumstance, which prevent the interpretation of the integral 
 as spin of a radiation irrespectively of the sense of ∫ ×× dV)(0 BErε AE× . Vectors  and  of a 

radiation are perpendicular to the direction of the propagation i.e. 
E B

0)( =⋅× kBE , where k  is the wave 
vector. So  for any radiation. Therefore the moment of momentum r0))(( =⋅×× kBEr )( BE×× must be 
calculated by the use of the non-radiative field, which is proportional to  in the case of a radiation 
into space. This indicate non-radiative nature of the moment of momentum  while spin 
is an attribute of a radiation and must be calculated by the use of fields, which is proportional to 
only. Heitler, when defending spin nature of the moment of momentum, refers to a subtle interference 
effect on this subject [17]. But this explanation seems to be not convincing. 

2/1 r

∫ ×× dV)(0 BErε

r/1  

On our opinion, it is necessary to concede that )(0 BEr ××ε  represents a moment of momentum, 
which has an orbital nature and does not represent spin of an electromagnetic radiation [18,19]. We use 

 as the spin density in Section 8, though spin density does not recognized in the modern 
electrodynamics. 

AE×0ε

 
5. Scheme of the calculations 

There are two methods of calculations of energy, moment of momentum and spin fluxes of an 
electromagnetic radiation. These methods of course give identical results. 

1. Volume density (of mass-energy or of moment of momentum) is integrated over a thin spherical 
layer (of thickness ), which surrounds the source of the radiation, and then the integral is divided by 

, on the assumption . So, the formulas for power of radiation and torque are obtained: 
dr

dt cdtdr =/

∫= dtdrdaTP i
i

tt / ,   ∫= dtdrdaTr k
k

tjiij /2 ][τ  [J].                                   (5.1) 

Here components of the Maxwell energy-momentum tensor are used: ttT  is the volume density of mass-
energy and jtT  is volume density of momentum, which is equal to the Poynting vector because of the 
symmetry of the Maxwell energy-momentum tensor, 

2/2/ 2
0

2
0 BET tt µε += ,    [kg/mBE×== 0ε

tjjt TT 2s].                                  (5.2) 
2. However, it is more natural to integrate flux density components of the Maxwell tensor over a 

surface, which surrounds the source of the radiation:  

∫= i
ti daTP  [kg/s],   ∫= k

kjiij daTr ][2τ ,                                     (5.3) 

here jkT  is the Maxwell stress tensor.  
The same two methods are applicable for a calculation of a spin radiation: 
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dtdrda k

k

ijtij

s
/∫= Υτ  [J],                                                (5.4) 

∫= k
ijkij

s
daΥτ ,                                                   (5.5) 

where ,  is a spin tensor. AE×= 0εΥ ijt λµνΥ
We show by a straight calculation that, in the field of a rotating dipole, the ratio of power to 

moment of momentum flux,  
ωτ =/P ,                                                            (5.6) 

differs from the ratio of power to spin flux, 
ωτ 2/ =

s
P ,                                                          (5.7) 

in accordance with formula (4.4), and thus a moment of momentum is not spin. It is important that the 
ratio  is the normal ratio of energy to spin for circularly polarized photons directed along the rotation 

axis , 
s

P τ/

)0( =θ
[ ] ωωτ

θ
==

=
hh //

0s
P ,                                                          (5.8) 

rather than ratio (5.7). 
We use the complex expressions for electromagnetic fields [15, V.1, p.284], [4, p.36],  

)exp(
4

)(3(
4

)(3(
4

))((
5

0

2

4
0

2

32
0

22

tiikz
r

r
cr

ri
rc

r
ω

πεπε
ω

πε
ω

−⎥
⎦

⎤
⎢
⎣

⎡ −
−

−
+

−
=

rprprprprprpE          (5.9) 

)exp(
44 32

2

tiikz
r

i
cr

ω
π

ω
π

ω
−⎥

⎦

⎤
⎢
⎣

⎡ ×
+

×
=

prprH                                                              (5.10) 

The calculation of the power P  by the method (5.3) is performed in [4, p.39] with a mistake. We 
give this calculation in Section 6, having corrected the mistake. The calculation of the moment of 
momentum flux  by the method (5.1) is performed in [4, p.41] with a mistake as well. We give this 
calculation in Section 7, having corrected the mistake. The calculation of the spin flux  by the method 

(5.4) is performed in Section 8.  

xyτ
ij

s
τ

 
6. Calculation of radiation power by method (5.3) 

We integrate the Poynting vector tiT  (5.2) over a spherical surface of radius r : 

∫∫∫ ×ℜ=×ℜ== 2
00 2/)(2/)( crdrddaTP i

ti ΩΩµε rHErHE ,               (6.1) 
ϕθθΩ ddd sin= , the line means complex conjugation. Substituting fields proportional to  from (5.9), 

(5.10) yields 
r/1

∫
−

= Ω
επ

ω d
rc

rP 4
0

52

224

32
|)(| rprp .                                        (6.2) 

This expression coincides with formula (2.71) in [4]. Using Cartesian components of the single dipole 
rotating in x-y plain yields  

)exp(),exp( tiiptip yx ωω −=−=  [C m].                                        (6.3) 
We obtain 

.cos1sin2/))((
/))((/])([])([

222

2422

θθ +=−=−+−+=

=−=−⋅−

riyxiyxpppp
rrrr

yyxx

rpprpprrpprprp
                       (6.4) 

So,  

∫
+

= ϕθ
επ

θθω dd
c

P
0

52

24

32
sin)cos1( .                                        (6.5) 

This result was obtained also as a solution of problem 1 in [20, § 67], but formula (2.73) in [4] 
inexplicably gives half of the quantity: 
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Ω
επ
θω d

c
dP

0
52

24

64
)cos1( +

= . 

So, mass-energy flux in the field of a rotating dipole is 

0
5

4

6 επ
ω
c

P =  [kg/s].                                                   (6.6) 

This result is twice as much as the result [4, (2.74)]. 
 

7. Calculation of moment of momentum flux by method (5.1) 
We integrate the moment of momentum volume density over a spherical layer 

cdrcdrdtdrdaTr k
k

tjiij ∫ ∫∫ −ℜ=××ℜ== 2/])()([2/)(/2 22
00

][ ΩΩµετ HrEHrEHEr .   (7.1) 
The first term on the right is zero, and the second term needs the use of the electromagnetic field, which is 
proportional to  2/1 r

Ω
επ

ω
Ω

π
ω

πε
ω

Ω
πε

ω
τ d

rc
id

ccr
icdr

cr
riij ∫∫∫

×
ℜ=

×
ℜ=

+−
ℜ= 23

0
2

3

2

2

2
0

2
4

0

2

16
)(2/

44
)(22/

4
)(3( prrpprrpHrprpr .  (7.2) 

This expression coincides with formula (2.78) in [3]. Since (6.3) we obtain 
θ222222 sin/)(/)])([(/])[( iryxirpypxypxpr xyyx −=+−=−+=× prrp .       (7.3) 

As , the torque emitted by the radiator is equal to ∫ =
π

θθ
0

3 3/4sin d

3
0

3
3

3
0

2

3

6
sin

16 c
dd

c
xy

πε
ω

ϕθθ
επ

ω
τ == ∫  [J].                                (7.4) 

Contrary to (7.4), formula (2.80) in [4] inexplicably gives half of quantity (7.4), . 
However, somehow the ratio of power to moment of momentum flux is equal to frequency (5.6) 

3
0

23 12/ cz επωτ =

ωτ =/2 Pc .                                            (7.5) 
 

8. Calculation of spin flux by method (5.4) 
We integrate the spin volume density, , over a spherical layer  AE×= 0εΥ ijt

∫∫ ℜ=ℜ= ωΩεΩετ // 2
][0

2
][0 cdrEEidtdrdrAE yxyx

xy

s
.                           (8.1) 

By the use  from (2.9), which is proportional to , and since (3.3) we obtain E r/1

.cos
16

)sin1(
16

)1(
16

]})(][)([])(][)({[
32

2/)(

2
42

0
2

4
2

42
0

2

4

2

22

42
0

2

4

2222
442

0
2

4

22
][

θ
επ
ω

θ
επ
ω

επ
ω

επ
ω

c
i

c
i

r
yx

c
i

xiyxryiyxiryiyxirxiyxr
rc

rEEEErEE xyyxyx

−
=−

−
=

+
−

−
=

=−−+−−−−−+−=

=−=

      (8.2) 

As , the spin flux emitted by the radiator is equal to  ∫ =
π

θθθ
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τ =  [J].                                                  (8.3) 

This is half of the moment of momentum flux (7.4). 
This result (8.3) was obtained by method (5.5) and by the use of spherical coordinates in paper 

[16]. In that paper, also the Corney’s mistakes were indicated.  
 

9. Conclusions, comments, and acknowledgements 
A separate existence of spin and moment of momentum as different physical concepts is 

emphasized. These concepts originates in the Lagrange formalism with Noether's theorem where the 
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canonical energy-momentum and spin tensor come into existence. We use the time component of the 
canonical spin tensor. We have ascertained the Humblet identity (4.3) for the light beam is accidental. 

I am deeply grateful to Professor Robert H. Romer for valiant publishing of my question [21] (was 
submitted on Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups: 
sci.physics.electromag).  
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