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A rotating electric dipole radiates spin and orbital angular momentum 
 

R. I. Khrapko
*
 

Moscow Aviation Institute, 125993, Moscow, Russia 

 

According to the standard electrodynamics, a rotating electric dipole emits angular momentum 

mainly into the equatorial part of space situated near the plane of the rotation where polarization of 

the radiation is almost linear. Polar regions situated near the axis of rotating are scanty by the 

angular momentum, although they are intensively illuminated by the almost circularly polarized 

radiation, which carries spin angular momentum. A conclusion is made that the electrodynamics 

describes orbital angular momentum only and overlooks spin. This means that the electrodynamics 

is not complete. We use an electrodynamics’ spin tensor and calculate the whole angular 

momentum flux radiated by the dipole. 

 

PACS numbers: 75.10.Hk, 03.50.Kk, 42.25.Ja, 41.60.-m 

Keywords: Electrodynamics torque, angular momentum, spin tensor 

 

1. Introduction and conclusions 

According to the standard electrodynamics [1, 2], a rotating electric dipole p  radiates time-average 

electromagnetic power
1
  

πω 6/24 pdtdWP ======== /                                                  (1.1) 

and angular momentum flux, i.e. torque
2
 

πω==τ 6// 23 pdtdL
L

                                                 (1.2) 

where W  and L  are the energy and angular momentum. Below we set 1=p , the speed of light 1=c , and 

10 =ε . 

The power (1.1) is usually obtained by integrating (see Sect. 2) 

πωπϕθθθω 6/32/sin)1(cos)( 4224∫∫∫∫ ∫∫∫∫ ====++++>=>=>=>=⋅⋅⋅⋅××××=<=<=<=< ddP daBE               (1.3) 

where BE×  is the Poynting vector and ϕθθ= ddr sinˆ 2rda  is a surface element ( r/ˆ rr= ). However, the 

torque (1.2) is obtained not so trivially. Corney [2] integrates moment of the Poynting vector over a spherical 

layer,  

>>>>××××××××==== ∫∫∫∫ dadtd )(/ BErL ,   ∫∫∫∫ ======== πωπϕθθω 6/16/sin/ 3233 dddtdLz .       (1.4) 

The angular distribution of power (1.3), 
224 32/)1(cos πθω ++++====ΩddP/ ,                                          (1.5) 

 is depicted in Fig. 1 from [2], and the angular distribution of the angular momentum flux relative to z-axis, 

according to (1.4),  
223 16/sin/ πω====ΩdtddL z ,                                              (1.6) 

is depicted in Fig. 2. Here ϕθθ=Ω ddd sin . 

The dipole radiation is elliptically polarized. The ratio of lengths of the half-axes equals  

θcos .                                                           (1.7) 

In particular, the z-directed ( 0=θ ) radiation is circularly polarized, and the radiation in the equatorial plane 

)2/( π=θ  is linearly polarized. The degree of the circular polarization (1.7) is depicted in Fig. 3. 

                                                           
*
 Email: khrapko_ri@hotmail.com 
1
 Corney [2] erroneously wrote that the power radiated by an electric dipole is πω 12/24 pP ====  in both cases, in the case of 

circular oscillation and in the case of linear oscillation (p. 40). But his Fig.2.6(b) is correct. 
2
 Corney [2] erroneously wrote πω= 12// 23 pdtdL . In reality, his eqn. (2.79) gives πω= 6// 23 pdtdL  because 

ipppp xyyx 2±=− ∗∗
. 
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But, there is a puzzle here. According to Fig. 2, the angular momentum is emitted mainly into the 

equatorial part of space, situated near the plane of the rotation where the polarization is elliptic or linear, 

according to Fig. 3. Polar regions, situated near the z-axis, are scanty by the angular momentum, although 

they are intensively illuminated, according to Fig. 1, by the almost circularly polarized radiation.  

However, R. Feynman, telling about spin of photons, clearly shows [3] that when a circularly 

polarized wave is absorbed, the absorbing medium gets spin angular momentum and energy in a ω/1  ratio 

because a circularly polarized wave carries spin angular momentum. 

From our viewpoint, this means that the angular momentum (1.2), (1.6) is an orbital angular 

momentum unconnected with spin of electromagnetic field. This angular momentum, possibly, has no wave 

nature because the Poynting vector does not need to have a wave nature. When rotation of a dipole is 

stationary, a torque acts on the dipole to compensate the radiated power (1.1)   

τω====P ,                                                                     (1.8) 

and this torque is emitted into the equatorial region as orbital angular momentum flux (1.2). 

From our viewpoint, the angular momentum (1.2), (1.6) does not exhaust the reality. Actually, the 

polar regions, illuminated by the circularly polarized light, get spin angular momentum. But calculating of 

this angular momentum calls for introducing a spin tensor into the standard electrodunamics. 

Electron spins of material of the dipole may be sources of the spin radiation. The electron spins are 

gradually oriented in parallel to z-axis during the radiation. In other words, a rotating dipole is being 

magnetized in the transverse direction. A demagnetization of the dipole requires an additional torque applied 

to the dipole. 

 

2. Calculation of the power and the orbital angular momentum 

Here we detail eqns. (1.3) and (1.4). The E and B field satisfy equations [2, 4]: 

,////3//34 32435 rprrrprprrrprprrrpE ii

k

kii

k

kii

k

ki
&&&&&& −+−+−=π                      (2.1) 

./2/24 2

][

3

][ rrprrpB kikiik
&&& +=π                                                    (2.2) 

We use spherical coordinate system ,1 rx =  ,2 θ=x  ,3 ϕ=x  with the metric 

,111 =g    ,222 rg =    ,sin 22

33 θ= rg    .sin2 θ= rg                                  (2.3) 

The unit dipole vector p has Cartesian components ),exp( tip x ω−=  0),exp( =ω−= zy ptiip , and 

spherical components: 

)](exp[)}sin/(,/)(cos,sin{ tiriprppp ri ω−ϕθ=θ=θ== ϕθ                                 (2.4) 

)](exp[}sin,cos,sin{ tiriprppp ri ω−ϕθ=θ=θ== ϕθ                                    (2.5) 

The contravariant components of E and covariant components of B are 
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π−ω+ϕθω−= 4/)](exp[sin)/2/2( 23 triirirE r ,                                                 (2.6) 

,4/)](exp[cos)///1( 2234 π−ω+ϕθω+ω+−=θ triirrirE                                         (2.7) 

),sin4/()](exp[)///( 2234 θπ−ω+ϕω+ω−−=ϕ triirirriE                                       (2.8) 

,4/)](exp[cos)/( 2 π−ω+ϕθω+ω=θ triiriBr                                                       (2.9) 

.0,4/)](exp[sin)/( 2 =π−ω+ϕθω−ω= θϕϕ BtriiirB r                                           (2.10) 

r-component of the Poynting vector, i.e. rT 0 -component of the Maxwell tensor, is 

rr

r BEBET ϕ
ϕ

θ
θ −=0 .                                                   (2.11) 

Using the higher powers of r, we obtain the time average quantity: 

)32/()1(cos2/){ 22240 rBEBET rr

r π+θω=−ℜ>=< ∗
ϕ

ϕ∗
θ

θ                                       (2.12) 

in accordance with (1.3). 

For accurate calculating of the angular momentum flux density (1.4), (1.6), we must use components 

of the Maxwell stress tensor ijT . i

j

ij FddaT ====  is the force acting on the surface element jda , and 

ki

L
j

jik ddaTr τ=][2  is the torque acting on jda . But the torque relative to z-axis is a three-vector ][ˆ3 ki

L

ldz τ , 

which must be dualized:  

z
L

lki

ki

L

l degdz τ=τ 2/ˆ .                                                           (2.13) 

Here lẑ  is the unite z-coordinate vector and lkieg  is the antisymmetric tensor.  

The component rT ϕ  of the Maxwell tensor is 
ϕϕϕθ

θ
ϕ −=−= EEEEBBT r

rr

r .                                         (2.14) 

The time average quantity is 

)16/(2/})({ 423 rEET rr πω=−ℜ>=< ∗ϕϕ .                                  (2.15) 

The unit vector ẑ  has spherical components 

0ˆ,/)(sinˆ,cosˆ =θ−=θ= ϕθ zrzz r                                         (2.16) 

Using (2.13) yields (1.4) because 1−=ϕθre , 

)6/()16/(sinˆ 3233∫∫ πω=πϕθθω=><=τ ϕθ
ϕθ dddaegTrz rr

r

z
L

.                          (2.17) 

 

3. Radiation of spin 

In this section we use an electromagnetic spin tensor [5-9]  
][][ µνλµνλλµνλµνλµν Π∇Π+∇=Υ+Υ=Υ AA

me
,   3,2,1,0,...,, =νµλ ,                     (3.1) 

to calculate spin emited into the polar regions. Here λλ Π,A  are the magnetic and electric vector potentials,  

][2 νµµν ∂= AF ,   λµλµν
ν

λµν
αλµνα =Π∂Π=Π Fe , .                                                       (3.2) 

Because of spherical coordinates we use covariant derivatives in (3.1). 

The sense of the spin tensor ijkΥ  is defined by the equation for a spin flux, dtdS ij / , across the 

surface element kda , i.e. for a spin torque on the element kda , 

ij

S

ij

k

ijk ddtdSda τ======== /Υ .                                                         (3.3) 

Now we calculate the spin radiation of the rotating dipole. 

We set 00 =φ=A . So, ω−=−= ∫ /iii iEdtEA . Similarly, ω==Π ∫ /iii iBdtB , where  

)//(/ 223 rirgBeB r

r ω−ω== ϕ
θϕθ ,4/)](exp[ π−ω+ϕ trii                           (3.4) 

θω+ω== θ
θϕϕ cos)//(/ 223 rrigBeB r

r )sin4/()](exp[ θπ−ω+ϕ trii .               (3.5) 

Therefore we have the time average spin tensor of the form 
2][][ 2/}{ ω∇+∇ℜ>=Υ+Υ=Υ< ∗∗ jkijkiijk

m

ijk

e

ijk BBEE ,                        (3.6) 
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Covariant derivatives, for example  
ji

jk

i

k

i

k EEE Γ+∂=∇ ,                                                                  (3.7) 

need connection coefficients i

jkΓ : 

rrr rr

rr /1,sin/cos,cossin,sin, 2 =Γ=Γθθ=Γθ⋅θ−=Γθ−=Γ−=Γ ϕ
ϕ

θ
θ

ϕ
θϕ

θ
ϕϕϕϕθθ            (3.8) 

Using (2.6) – (2.8), (3.4) – (3.8) yields two components of the electric part of the spin tensor, 

)sin32/(cos)/2/( 2643 θπθω−ω>=Υ< θϕ rrr

e
,                                        (3.9) 

)32/( 25 πω−>=Υ< ϕ rrr

e
,                                                     (3.10) 

and the magnetic part 

)sin32/(cos 243 θπθω>=Υ< θϕ rr

m
.                                          (3.11) 

So, we have two components of the spin tensor 

)sin16/(cos)//( 2643 θπθω−ω>=Υ<+>Υ>=<Υ< θϕθϕθϕ rrr

m

r

e

r ,                  (3.12) 

)32/( 25 πω−>=Υ>=<Υ< ϕϕ rrr

e

rr .                                                (3.13) 

The spin angular momentum flux relative to z-axis across an element ida  is the dualized three-

vector:  

gdazzegdazddtdS r

rrrr

lijk

ijkl

z
S

z )ˆˆ(2/ˆ/ ϕθθϕτ ΥΥΥ ++++============ .             (3.14) 

as in the case of the angular momentum flux (2.13). Using (2.16) yields the time average spin flux radiated 

by the dipole  

)12/()16/()]sinsincos2)(2/(sincos[ 3232223∫ πω=πϕθθ+θθ−ω+θω=τ ddrz
S

.             (3.15) 

The second term in this integrand describes an interesting phenomenon. Except the part of the spin flux 

(3.15) that is radiated to infinity, a closed spin flow circulates not far from the rotating dipole. This spin flow 

is directed outside in the equatorial area, but is returned back in the polar area because 

∫ =ϕθθ+θ⋅θ− 0)sinsincos2( 32 dd .                                 (3.16) 

This is a torque strength of the electromagnetic field. 

Thus the circular oscillator radiates spin flux  

)12/()16/(sincos/ 3223∫ πω=πϕθθθω==τ dddtdS zz
S

.                          (3.17) 

Angular distribution of this spin flux is 

)16/(cos/ 223 πθω=Ωτ dd z
S

                                              (3.18) 

instead of (1.6). This is depicted in Fig. 4. Note that the ratio of the spin flux density to the power density at 

0=θ  equals to ω/1 , just as for a photon, because the radiation is circularly polarized along the direction 

0=θ : 

ω
=

π+θω

πθω

=θ

1

)32/()1(cos

)16/(cos

0

224

223

.                                                (3.19) 

However, the total spin flux (3.17) is half of the total orbital angular momentum flux (1.2), (2.17). 

 

Notes, and Acknowledgements 

Material of this paper was submitted to scientific journals (the dates of the first submissions are in 

parentheses): AJP (28 Mar 2002 ), EPL (15 Apr 2003), FOOP (5 May 2002), JETP (26 Nov 2001), JPB (12 

Dec 2003), NJP (5 July 2003), OC (22 Mar 2006), PRA (July 19, 2006 ), PRL (July 19, 2006) RPJ (24 Nov 

2001). 

I am deeply grateful to Professor Robert H. Romer for publishing my question [10] (was submitted 

on Oct. 7, 1999) and to Professor Timo Nieminen for valuable discussions (Newsgroups: 

sci.physics.electromag).  

Page 4 of 5

http://mc.manuscriptcentral.com/tmop

Journal of Modern Optics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

5 

 

References 

[1] Landau, L.D., Lifshitz, E.M. The Classical Theory of Fields; Pergamon: N. Y., 1975. 

[2] Corney, A. Atomic and Laser Spectroscopy; Oxford University Press, 1977. 

[3] Feynman R.P., et al. The Feynman Lectures on Physics, v. 3; Addison-Wesley, London, 1965. 

[4] Sivoukhin, D. Cours de physique generale. Electricite, v. 3, Traduction Francaise Editions, Mir, 

Moscow, 1983. 

[5] Khrapko, R.I. “True energy-momentum and spin tensors are unique” in Theses of 10th Russian GR 

Conference, p. 47 (Vladimir, 1999) (In Russian) 

[6] Khrapko, R.I. Spin density of electromagnetic waves. 

http://www.mai.ru/science/trudy/articles/num3/article6/auther.htm (accessed Feb 16, 2001) (in 

Russian). 

[7] Khrapko, R.I. True Energy-momentum Tensors are Unique. Electrodynamics Spin Tensor is not Zero. 

http://arXiv.org/abs/physics/0102084. 

[8] Khrapko, R.I. Violation of the Gauge Equivalence. http://arXiv.org/abs/physics/0105031 

[9] Khrapko, R.I. J. Modern Optics 2008, 55, 1487 

[10] Khrapko R.I. Amer. J. Phys. 2001, 69, 405. 

Page 5 of 5

http://mc.manuscriptcentral.com/tmop

Journal of Modern Optics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.mai.ru/science/trudy/articles/num3/article6/auther.htm
http://arxiv.org/abs/physics/0102084
http://arxiv.org/abs/physics/0105031

